zoukankan      html  css  js  c++  java
  • python基础3.0

    模块:

    引用模块

    作用域:

    在一个模块中,我们可能会定义很多函数和变量,但有的函数和变量我们希望给别人使用,有的函数和变量我们希望仅仅在模块内部使用。在Python中,是通过_前缀来实现的。

    正常的函数和变量名是公开的(public),可以被直接引用,比如:abcx123PI等;

    类似__xxx__这样的变量是特殊变量,可以被直接引用,但是有特殊用途,比如上面的__author____name__就是特殊变量,hello模块定义的文档注释也可以用特殊变量__doc__访问,我们自己的变量一般不要用这种变量名;

    类似_xxx__xxx这样的函数或变量就是非公开的(private),不应该被直接引用,比如_abc__abc等;

    之所以我们说,private函数和变量“不应该”被直接引用,而不是“不能”被直接引用,是因为Python并没有一种方法可以完全限制访问private函数或变量,但是,从编程习惯上不应该引用private函数或变量。

    private函数或变量不应该被别人引用,那它们有什么用呢?请看例子:

    def _private_1(name):
        return 'Hello, %s' % name
    
    def _private_2(name):
        return 'Hi, %s' % name
    
    def greeting(name):
        if len(name) > 3:
            return _private_1(name)
        else:
            return _private_2(name)
    

    我们在模块里公开greeting()函数,而把内部逻辑用private函数隐藏起来了,这样,调用greeting()函数不用关心内部的private函数细节,这也是一种非常有用的代码封装和抽象的方法,即:

    外部不需要引用的函数全部定义成private,只有外部需要引用的函数才定义为public。

    模块搜索路径

    当我们试图加载一个模块时,Python会在指定的路径下搜索对应的.py文件,如果找不到,就会报错:

    >>> import mymodule
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ImportError: No module named mymodule
    

    默认情况下,Python解释器会搜索当前目录、所有已安装的内置模块和第三方模块,搜索路径存放在sys模块的path变量中:

    >>> import sys
    >>> sys.path
    ['', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python36.zip', '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6', ..., '/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages']
    

    如果我们要添加自己的搜索目录,有两种方法:

    一是直接修改sys.path,添加要搜索的目录:

    >>> import sys
    >>> sys.path.append('/Users/michael/my_py_scripts')
    

    这种方法是在运行时修改,运行结束后失效。

    第二种方法是设置环境变量PYTHONPATH,该环境变量的内容会被自动添加到模块搜索路径中。设置方式与设置Path环境变量类似。注意只需要添加你自己的搜索路径,Python自己本身的搜索路径不受影响。

    面向对象的OOP

    数据封装、继承和多态是面向对象的三大特点。向对象的设计思想是从自然界中来的,因为在自然界中,类(Class)和实例(Instance)的概念是很自然的。Class是一种抽象概念,比如我们定义的Class——Student,是指学生这个概念,而实例(Instance)则是一个个具体的Student,比如,Bart Simpson和Lisa Simpson是两个具体的Student。所以,面向对象的设计思想是抽象出Class,根据Class创建Instance。面向对象的抽象程度又比函数要高,因为一个Class既包含数据,又包含操作数据的方法。

    面向对象最重要的概念就是类(Class)和实例(Instance),必须牢记类是抽象的模板。类是创建实例的模板,而实例则是一个一个具体的对象,各个实例拥有的数据都互相独立,互不影响;方法就是与实例绑定的函数,和普通函数不同,方法可以直接访问实例的数据;通过在实例上调用方法,我们就直接操作了对象内部的数据,但无需知道方法内部的实现细节

    访问限制:

    如果要让内部属性不被外部访问,可以把属性的名称前加上两个下划线__,在Python中,实例的变量名如果以__开头,就变成了一个私有变量(private),只有内部可以访问,外部不能访问

    class Student(object):
    
        def __init__(self, name, score):
            self.__name = name
            self.__score = score
    
        def print_score(self):
            print('%s: %s' % (self.__name, self.__score))
        def get_name(self):
            return self.__name
    
        def get_score(self):
            return self.__scor
    

     继承与多态

    继承可以把父类的所有功能都直接拿过来,这样就不必重零做起,子类只需要新增自己特有的方法,也可以把父类不适合的方法覆盖重写。

    动态语言的鸭子类型特点决定了继承不像静态语言那样是必须的。

    获取对象信息:

    type判断对象类型

    types中定义的常量函数

    instance()函数

    dir()函数 获取一个对象的所有属性和方法

    配合getattr()setattr()以及hasattr(),我们可以直接操作一个对象的状态

    >>> class MyObject(object):
    ...     def __init__(self):
    ...         self.x = 9
    ...     def power(self):
    ...         return self.x * self.x
    ...
    >>> obj = MyObject()
    

    紧接着,可以测试该对象的属性:

    >>> hasattr(obj, 'x') # 有属性'x'吗?
    True
    >>> obj.x
    9
    >>> hasattr(obj, 'y') # 有属性'y'吗?
    False
    >>> setattr(obj, 'y', 19) # 设置一个属性'y'
    >>> hasattr(obj, 'y') # 有属性'y'吗?
    True
    >>> getattr(obj, 'y') # 获取属性'y'
    19
    >>> obj.y # 获取属性'y'
    19

    实例属性和类属性

    实例属性属于各个实例所有,互不干扰;

    类属性属于类所有,所有实例共享一个属性;不要对实例属性和类属性使用相同的名字,否则将产生难以发现的错误

    python允许动态绑定属性和方法

    class Student(object):
        pass
    
    然后,尝试给实例绑定一个属性:
    
    >>> s = Student()
    >>> s.name = 'Michael' # 动态给实例绑定一个属性
    >>> print(s.name)
    Michael
    
    还可以尝试给实例绑定一个方法:
    
    >>> def set_age(self, age): # 定义一个函数作为实例方法
    ...     self.age = age
    ...
    >>> from types import MethodType
    >>> s.set_age = MethodType(set_age, s) # 给实例绑定一个方法
    >>> s.set_age(25) # 调用实例方法
    >>> s.age # 测试结果
    25
    

    使用__slots__

    限制实例的属性

    比如,只允许对Student实例添加nameage属性。

    为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class实例能添加的属性:

    class Student(object):
        __slots__ = ('name', 'age') # 用tuple定义允许绑定的属性名称
    
    然后,我们试试:
    
    >>> s = Student() # 创建新的实例
    >>> s.name = 'Michael' # 绑定属性'name'
    >>> s.age = 25 # 绑定属性'age'
    >>> s.score = 99 # 绑定属性'score'
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    AttributeError: 'Student' object has no attribute 'score'
    

    由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

    使用__slots__要注意,__slots__定义的属性仅对当前类实例起作用,对继承的子类是不起作用的:

    >>> class GraduateStudent(Student):
    ...     pass
    ...
    >>> g = GraduateStudent()
    >>> g.score = 9999
    

    除非在子类中也定义__slots__,这样,子类实例允许定义的属性就是自身的__slots__加上父类的__slots__

    使用@property

    Python内置的@property装饰器就是负责把一个方法变成属性调用的

    class Student(object):
    
        @property
        def score(self):
            return self._score
    
        @score.setter
        def score(self, value):
            if not isinstance(value, int):
                raise ValueError('score must be an integer!')
            if value < 0 or value > 100:
                raise ValueError('score must between 0 ~ 100!')
            self._score = value
    

    @property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作

    多重继承

    class Dog(Mammal, RunnableMixIn, CarnivorousMixIn):
        pass
    

    定制类

    __str__和__repr__

    class Student(object):
        def __init__(self, name):
            self.name = name
        def __str__(self):
            return 'Student object (name=%s)' % self.name
        __repr__ = __str__
    

     __iter__、__getattr__、__call__

    使用枚举类:

    from enum import Enum
    
    Month = Enum('Month', ('Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'))
    

    value属性则是自动赋给成员的int常量,默认从1开始计数。

    如果需要更精确地控制枚举类型,可以从Enum派生出自定义类:

    from enum import Enum, unique
    
    @unique
    class Weekday(Enum):
        Sun = 0 # Sun的value被设定为0
        Mon = 1
        Tue = 2
        Wed = 3
        Thu = 4
        Fri = 5
        Sat = 6
    

    @unique装饰器可以帮助我们检查保证没有重复值。

    访问这些枚举类型可以有若干种方法:

    >>> day1 = Weekday.Mon
    >>> print(day1)
    Weekday.Mon
    >>> print(Weekday.Tue)
    Weekday.Tue
    >>> print(Weekday['Tue'])
    Weekday.Tue
    >>> print(Weekday.Tue.value)
    2
    >>> print(day1 == Weekday.Mon)
    True
    >>> print(day1 == Weekday.Tue)
    False
    >>> print(Weekday(1))
    Weekday.Mon
    >>> print(day1 == Weekday(1))
    True
    >>> Weekday(7)
    Traceback (most recent call last):
      ...
    ValueError: 7 is not a valid Weekday
    >>> for name, member in Weekday.__members__.items():
    ...     print(name, '=>', member)
    ...
    Sun => Weekday.Sun
    Mon => Weekday.Mon
    Tue => Weekday.Tue
    Wed => Weekday.Wed
    Thu => Weekday.Thu
    Fri => Weekday.Fri
    Sat => Weekday.Sat
    

     可见,既可以用成员名称引用枚举常量,又可以直接根据value的值获得枚举常量。

    元类:

    type()函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过type()函数创建出Hello类,而无需通过class Hello(object)...的定义。

    >>> def fn(self, name='world'): # 先定义函数
    ...     print('Hello, %s.' % name)
    ...
    >>> Hello = type('Hello', (object,), dict(hello=fn)) # 创建Hello class
    >>> h = Hello()
    >>> h.hello()
    Hello, world.
    >>> print(type(Hello))
    <class 'type'>
    >>> print(type(h))
    <class '__main__.Hello'>
    

    要创建一个class对象,type()函数依次传入3个参数:

    1. class的名称;
    2. 继承的父类集合,注意Python支持多重继承,如果只有一个父类,别忘了tuple的单元素写法;
    3. class的方法名称与函数绑定,这里我们把函数fn绑定到方法名hello上。

    metaclass

    除了使用type()动态创建类以外,要控制类的创建行为,还可以使用metaclass。

    metaclass,直译为元类,简单的解释就是:

    当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

    但是如果我们想创建出类呢?那就必须根据metaclass创建出类,所以:先定义metaclass,然后创建类。

    连接起来就是:先定义metaclass,就可以创建类,最后创建实例。

    所以,metaclass允许你创建类或者修改类。换句话说,你可以把类看成是metaclass创建出来的“实例”。

     错误、调试和测试

    try...except...finally

    try:
        print('try...')
        r = 10 / int('2')
        print('result:', r)
    except ValueError as e:
        print('ValueError:', e)
    except ZeroDivisionError as e:
        print('ZeroDivisionError:', e)
    else:
        print('no error!')
    finally:
        print('finally...')
    print('END')
    

     出错的时候,一定要分析错误的调用栈信息,才能定位错误的位置。

    raise

    # err_reraise.py
    
    def foo(s):
        n = int(s)
        if n==0:
            raise ValueError('invalid value: %s' % s)
        return 10 / n
    
    def bar():
        try:
            foo('0')
        except ValueError as e:
            print('ValueError!')
            raise
    
    bar()
    

    Python内置的try...except...finally用来处理错误十分方便。出错时,会分析错误信息并定位错误发生的代码位置才是最关键的。

    程序也可以主动抛出错误,让调用者来处理相应的错误。但是,应该在文档中写清楚可能会抛出哪些错误,以及错误产生的原因。

    assert() 断言

    def foo(s):
        n = int(s)
        assert n != 0, 'n is zero!'
        return 10 / n
    
    def main():
        foo('0')
    

     logging

    import logging
    logging.basicConfig(level=logging.INFO)
    s = '0'
    n = int(s)
    logging.info('n = %d' % n)
    print(10 / n)
    

     断点,调试

    注意:断言的开关“-O”是英文大写字母O,不是数字0。

    单元测试:

    class Dict(dict):
    
        def __init__(self, **kw):
            super().__init__(**kw)
    
        def __getattr__(self, key):
            try:
                return self[key]
            except KeyError:
                raise AttributeError(r"'Dict' object has no attribute '%s'" % key)
    
        def __setattr__(self, key, value):
            self[key] = value
    

     为了编写单元测试,我们需要引入Python自带的unittest模块,编写mydict_test.py如下:

    import unittest
    
    from mydict import Dict
    
    class TestDict(unittest.TestCase):
    
        def test_init(self):
            d = Dict(a=1, b='test')
            self.assertEqual(d.a, 1)
            self.assertEqual(d.b, 'test')
            self.assertTrue(isinstance(d, dict))
    
        def test_key(self):
            d = Dict()
            d['key'] = 'value'
            self.assertEqual(d.key, 'value')
    
        def test_attr(self):
            d = Dict()
            d.key = 'value'
            self.assertTrue('key' in d)
            self.assertEqual(d['key'], 'value')
    
        def test_keyerror(self):
            d = Dict()
            with self.assertRaises(KeyError):
                value = d['empty']
    
        def test_attrerror(self):
            d = Dict()
            with self.assertRaises(AttributeError):
                value = d.empty
    

    setUp与tearDown

    可以在单元测试中编写两个特殊的setUp()tearDown()方法。这两个方法会分别在每调用一个测试方法的前后分别被执行。

    setUp()tearDown()方法有什么用呢?设想你的测试需要启动一个数据库,这时,就可以在setUp()方法中连接数据库,在tearDown()方法中关闭数据库,这样,不必在每个测试方法中重复相同的代码:

    class TestDict(unittest.TestCase):
    
        def setUp(self):
            print('setUp...')
    
        def tearDown(self):
            print('tearDown...')
    

     文档测试

  • 相关阅读:
    在Spring Bean的生命周期中各方法的执行顺序
    java面试宝典
    js代码中实现页面跳转的几种方式
    APP测试学习:系统资源分析
    APP测试学习:webview性能分析
    APP测试学习:app启动性能分析
    App测试学习:自动遍历测试
    性能测试学习:jmeter通过代理录制、回放请求
    Docker学习五:如何搭建私有仓库
    Docker学习四:容器基本操作
  • 原文地址:https://www.cnblogs.com/icat-510/p/10818627.html
Copyright © 2011-2022 走看看