zoukankan      html  css  js  c++  java
  • xxtest

    demo.py

    import torch
    import torchvision.utils as vutils
    import numpy as np
    import torchvision.models as models
    from torchvision import datasets
    from tensorboardX import SummaryWriter

    resnet18 = models.resnet18(False)
    writer = SummaryWriter()
    sample_rate = 44100
    freqs = [262, 294, 330, 349, 392, 440, 440, 440, 440, 440, 440]

    for n_iter in range(100):

    dummy_s1 = torch.rand(1)
    dummy_s2 = torch.rand(1)
    # data grouping by `slash`
    writer.add_scalar('data/scalar1', dummy_s1[0], n_iter)
    writer.add_scalar('data/scalar2', dummy_s2[0], n_iter)
    
    writer.add_scalars('data/scalar_group', {'xsinx': n_iter * np.sin(n_iter),
                                             'xcosx': n_iter * np.cos(n_iter),
                                             'arctanx': np.arctan(n_iter)}, n_iter)
    
    dummy_img = torch.rand(32, 3, 64, 64)  # output from network
    if n_iter % 10 == 0:
        x = vutils.make_grid(dummy_img, normalize=True, scale_each=True)
        writer.add_image('Image', x, n_iter)
    
        dummy_audio = torch.zeros(sample_rate * 2)
        for i in range(x.size(0)):
            # amplitude of sound should in [-1, 1]
            dummy_audio[i] = np.cos(freqs[n_iter // 10] * np.pi * float(i) / float(sample_rate))
        writer.add_audio('myAudio', dummy_audio, n_iter, sample_rate=sample_rate)
    
        writer.add_text('Text', 'text logged at step:' + str(n_iter), n_iter)
    
        for name, param in resnet18.named_parameters():
            writer.add_histogram(name, param.clone().cpu().data.numpy(), n_iter)
    
        # needs tensorboard 0.4RC or later
        writer.add_pr_curve('xoxo', np.random.randint(2, size=100), np.random.rand(100), n_iter)
    

    dataset = datasets.MNIST('mnist', train=False, download=True)
    images = dataset.test_data[:100].float()
    label = dataset.test_labels[:100]

    features = images.view(100, 784)
    writer.add_embedding(features, metadata=label, label_img=images.unsqueeze(1))

    export scalar data to JSON for external processing

    writer.export_scalars_to_json("./all_scalars.json")
    writer.close()

  • 相关阅读:
    IDEA中Git实战
    高并发下redis缓存穿透问题解决方案
    springboot整合mybatis+generator
    Github修改项目显示的语言类型
    Github中README.md换行
    maven中可以直接引用的java系统属性和环境变量属性
    springboot启动异常java.lang.NoSuchFieldError: DEFAULT_INCOMPATIBLE_IMPROVEMENTS
    java获取Linux持续运行时间及友好显示
    http工具类
    idHTTP最简洁的修改和取得Cookie例子
  • 原文地址:https://www.cnblogs.com/icemiaomiao3/p/15241849.html
Copyright © 2011-2022 走看看