zoukankan      html  css  js  c++  java
  • Keras简单使用

    Keras简单使用

    在keras中建立模型

    相对于自己写机器学习相关的函数,keras更能快速搭建模型,流程如下:

    1. 通过调用下面的函数创建模型

    2. 通过调用 model.compile(optimizer = "...", loss = "...", metrics = ["accuracy"])编译模型

    3. 通过调用 model.fit(x = ..., y = ..., epochs = ..., batch_size = ...)在训练集上训练模型

    4. 通过调用model.evaluate(x = ..., y = ...)在测试集上测试模型

    如果你想查阅更多有关model.compile(), model.fit(), model.evaluate() 的信息和它们的参数, 请参考官方文档 Keras documentation.

    代码如下:

     1 def model(input_shape):
     2     # Define the input placeholder as a tensor with shape input_shape. Think of this as your input image!
     3     X_input = Input(input_shape)
     4  5     # Zero-Padding: pads the border of X_input with zeroes
     6     X = ZeroPadding2D((3, 3))(X_input)
     7  8     # CONV -> BN -> RELU Block applied to X
     9     X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)
    10     X = BatchNormalization(axis = 3, name = 'bn0')(X)
    11     X = Activation('relu')(X)
    12 13     # MAXPOOL
    14     X = MaxPooling2D((2, 2), name='max_pool')(X)
    15 16     # FLATTEN X (means convert it to a vector) + FULLYCONNECTED
    17     X = Flatten()(X)
    18     X = Dense(1, activation='sigmoid', name='fc')(X)
    19 20     # Create model. This creates your Keras model instance, you'll use this instance to train/test the model.
    21     model = Model(inputs = X_input, outputs = X, name='HappyModel')
    22 23 return model
     1 step 1:
     2 happyModel = HappyModel(X_train.shape[1:]) # 只保留一个例子
     3  4 step 2:
     5 happyModel.compile(optimizer = 'sgd', loss = 'binary_crossentropy', metrics = ['accuracy'])
     6  7 step 3 8 happyModel.fit(x = X_train,y = Y_train, epochs = 5, batch_size = 16)
     9 10 step 411 preds =  happyModel.evaluate(x = X_test, y = Y_test)
    12 # preds[0] = Loss
    13 # preds[1] = Test Accuracy

    此时,模型参数均已确定,可用来测试自己的图片

    测试自己的图片

    1 1 img_path = 'your picture path'
    2 2 img = image.load_img(img_path, target_size=(64, 64))
    3 3 imshow(img)
    4 45 5 x = image.img_to_array(img)
    6 6 x = np.expand_dims(x, axis=0)
    7 7 x = preprocess_input(x)
    8 89 9 print(happyModel.predict(x))

    一些有用的函数(持续更新)

    1. happyModel.summary():统计并打印如下内容

    2. plot_model()画出流程图

      1 plot_model(happyModel, to_file='HappyModel.png')
      2 SVG(model_to_dot(happyModel).create(prog='dot', format='svg'))

  • 相关阅读:
    Java实现字符串的包含
    Java实现字符串的包含
    Java实现字符串的包含
    Java实现字符串的包含
    Java实现字符串的包含
    穷文富理撑死工,得先学门能挣钱的手艺
    Windows更新清理工具 (winsxs 清理工具)
    SQLite实现内存键值存储
    Qt5.7.0移植到4412
    罗辑思维2014 第11集 迷茫时代的明白人(慢慢来,能做一点是一点),有书卖
  • 原文地址:https://www.cnblogs.com/icodeworld/p/10890358.html
Copyright © 2011-2022 走看看