zoukankan      html  css  js  c++  java
  • 几种改进的谱减算法简介

    非线性谱减

    Berouti等人提出的谱减算法,假设了噪声对所有的频谱分量都有同等的影响,继而只用了一个过减因子来减去对噪声的过估计。现实世界中的噪声并非如此,这意味着可以用一个频率相关的减法因子来处理不同类型的噪声。
     
    多带谱减法
    在多带算法中,将语音频谱划分为N个互不重叠的子带,谱减法在每个子带独立运行。将语音信号分为多个子带信号的过程可以通过在时域使用带通滤波器来进行,或者在频域使用适当的窗。通常会采用后一种办法,因为实现起来有更小的运算量。
     
    多带谱减与非线性谱减的主要区别在于对过减因子的估计。多带算法针对频带估计减法因子,而非线性谱减算法针对每一个频点,导致频点上的信噪比可能有很大变化。这种剧烈变化是谱减法中所遇到的语音失真(音乐噪声)的原因之一。相反,子带信噪比变化则不会特别剧烈。
     
    MMSE谱减算法
    上面的方法中,谱减参数alpha和beta通过实验确定,无论如何都不会是最优的选择。MMSE谱减法能够在均方意义下最优地选择谱减参数。具体请参考论文:A parametic formulation of the generalized spectral subtractor method
     
    扩展谱减法
    基于自适应维纳滤波与谱减原理的结合。维纳滤波用于估计噪声谱,然后从带噪语音信号中减去该噪声谱。具体请参考以下两篇论文:
    Extended Spectral Substraction:Description and Preliminary Results.  
    Extended Spectral Substraction
     
    自适应增益平均的谱减
    谱减法中导致音乐噪声的两个因素在于谱估计的大范围变化以及增益函数的不同。对于第一个问题,Gustafsson等人建议将分析帧划分为更换小的子帧以得到更低分辨率的频谱。子帧频谱通过连续平均以减小频谱的波动。对于第二个问题Gustafsson等人提出使用自适应指数平均,在时间上对增益函数做平滑。此外,为了避免因使用零相位增益函数导致的非因果滤波问题,Gustafsson等人建议在增益函数中引入线性相位。具体请参考论文:Spectral subtraction using reduced delay convolution and adaptive averaging
     
    选择性谱减法
    前面提到的方法对所有语音都做同样处理。并不区分是浊音段还是清音段。区分浊音与清音的谱减法有:
     
    (1)双频带谱减法。通过将带噪语音能量与某一阈值进行比较,把语音帧分为浊音和清音。对于浊音帧,用算法确定一个截止频率,在该截止频率之上,语音被认为是随机信号。浊音段则通过滤波分为两个频带,一个频带位于截止频率之下(低通滤波后的语音),另外一个频带高于截止频率(高通滤波后的语音)。然后对低通和高通后的语音信号使用不同的算法进行处理。对低通语音部分在短时傅立叶变换的基础上使用过减算法,对于高通部分以及清音段,使用Thomson的多窗谱估计器取代FFT估计器。主要目的在于减小高频部分的频谱值的波动。具体请参考论文:Adaptive two-band spectral subtraction with multi-window spectral estimation
     
    (2)双激励语音模型法,该算法把语音分为两个独立的组成部分--浊音分量和清音分量。也就是说,语音由这两个分量的和来表示(注意不同于将语音分为浊音段和清音段)。浊音分量的分析是基于对基音频率和谐波幅度的提取。然后从带噪语音谱中减去浊音谱就得到了清音谱。然后使用一个双通道系统,基中一个包括改进的维纳滤波器,被用于增强清音谱。最终增强的语音由增强后的浊音分量和清音分量求和得到。具体请参考论文:Speech enhancement using the dual excitation speech model
     
    (3)还有一种基于浊音、清音的谱减算法,在该算法中语音帧首先根据能量和过零率被划分为浊音和清音。然后将带噪语音谱与锐化函数进行卷积,清音的频谱就会被锐化(用锐化函数进行镨锐化的目的在于增加谱对比度,即在抑制谱谷的同时使谱峰更加突出)。具体请参考论文:Spectral subtraction based on phonetic dependency and masking effects
     
    基于感知特性的谱减
    前面提到的方法,谱减参数要么是通过实验计算短时信噪比得到,要么是通过最优均方误差得到,均没有考虑听觉系统的特性,该算法的主要目的是使残余噪声在听觉上难以被察觉。利用了人类听觉系统改进系统的可懂度(即人耳的掩蔽效应)
  • 相关阅读:
    基于Vue.js的表格分页组件
    浅谈Vue.js
    利用js2image把代码压缩成圣诞树
    在AngularJS中的使用Highcharts图表控件
    使用Uploadify(UploadiFive)多文件上传控件遇到的坑
    iOS开源项目周报0323
    安卓开源项目周报0322
    前端开源项目周报0321
    iOS开源项目周报0316
    安卓开源项目周报0315
  • 原文地址:https://www.cnblogs.com/icoolmedia/p/5187559.html
Copyright © 2011-2022 走看看