zoukankan      html  css  js  c++  java
  • XV6源代码阅读-同步机制

    Exercise1 源代码阅读

    锁部分:spinlock.h/spinlock.c以及相关其他文件代码

    // Mutual exclusion lock.
    struct spinlock {
      uint locked; // 0未被占用, 1已被占用
      
      // For debugging:
      char *name;        // Name of lock.
      struct cpu *cpu;   // The cpu holding the lock.
      uint pcs[10];      // The call stack (an array of program counters)
                         // that locked the lock.
    };
    
    // 初始化自旋锁
    void initlock(struct spinlock *lk, char *name)
    {
      lk->name = name;
      lk->locked = 0;
      lk->cpu = 0;
    }
    
    // Acquire the lock.
    // Loops (spins) until the lock is acquired.
    // Holding a lock for a long time may cause
    // other CPUs to waste time spinning to acquire it.
    void acquire(struct spinlock *lk)
    {
      // 关中断
      pushcli(); // disable interrupts to avoid deadlock.
      if(holding(lk)) // 判断锁的持有是否为当前cpu
        panic("acquire");
    
      // The xchg is atomic.
      // It also serializes, so that reads after acquire are not
      // reordered before it. 
      while(xchg(&lk->locked, 1) != 0); // 拿不到锁开始自旋
    
      // Record info about lock acquisition for debugging.
      lk->cpu = cpu;
      getcallerpcs(&lk, lk->pcs);
    }
    
    // Release the lock.
    void release(struct spinlock *lk)
    {
      if(!holding(lk))
        panic("release");
    
      lk->pcs[0] = 0;
      lk->cpu = 0;
    
      // The xchg serializes, so that reads before release are 
      // not reordered after it.  The 1996 PentiumPro manual (Volume 3,
      // 7.2) says reads can be carried out speculatively and in
      // any order, which implies we need to serialize here.
      // But the 2007 Intel 64 Architecture Memory Ordering White
      // Paper says that Intel 64 and IA-32 will not move a load
      // after a store. So lock->locked = 0 would work here.
      // The xchg being asm volatile ensures gcc emits it after
      // the above assignments (and after the critical section).
      xchg(&lk->locked, 0);
    
      popcli();
    }
    

    Exercise2 带着问题阅读

    1.什么是临界区? 什么是同步和互斥? 什么是竞争状态? 临界区操作时中断是否应该开启? 中断会有什么影响? XV6的锁是如何实现的,有什么操作? xchg 是什么指令,该指令有何特性?

    • 临界区(Critical Section):访问临界区的那段代码,多个进程/线程必须互斥进入临界区;
    • 同步(Synchronization):指多个进程/线程能够按照程序员期望的方式来协调执行顺序,为了实现这个目的,必须要借助于同步机制(如信号量,条件变量,管程等);
    • 互斥(Mutual Exclusion):互斥的目的是保护临界区;
    • 竞争状态:竞争是基于并发环境下的,单个进程/线程不存在竞争,在并发环境下,多个进程/线程都需要请求某资源的时候,只有竞争到该资源的进程/线程才能够执行,释放资源后,剩余进程/线程按照预定的算法策略重新竞争;
    • 操作临界区必须关中断,对临界区的操作是原子性的;
    • 中断影响:中断降低了并发性能,同时中断也会导致频繁的上下文切换,上下文切换会导致tlb快表失效,因此要尽可能的缩减中断处理的时间;
    • 自旋锁(Spinlock):xv6中利用该数据结构实现多个进程/线程同步和互斥访问临界区。当进程/线程请求锁失败时进入循环,直至锁可用并成功拿到后返回,对于单cpu系统自旋锁浪费CPU资源,不利于并发,自旋锁的优势体现在多CPU系统下,XV6支持多CPU。主要接口有void initlock(struct spinlock * lk, char * name)、void initlock(struct spinlock * lk, char * name)、void release(struct spinlock * lk);
    • xchg:xchg()函数使用GCC的内联汇编语句,该函数中通过xchg原子性交换spinlock.locked和newval,并返回spinlock.locked原来的值。当返回值为1时,说明其他线程占用了该锁,继续循环等待;当返回值为0时,说明其他地方没有占用该锁,同时locked本设置成1了,所以该锁被此处占用。
    // x86.h 调用方式如xchg(&lk->locked, 1)
    static inline uint xchg(volatile uint *addr, uint newval)
    {
      uint result;
      
      // The + in "+m" denotes a read-modify-write operand.
      asm volatile("lock; xchgl %0, %1" :
                   "+m" (*addr), "=a" (result) :
                   "1" (newval) :
                   "cc");
      return result;
    }
    

    2.基于XV6的spinlock, 请给出实现信号量、读写锁、信号机制的设计方案(三选二,请写出相应的伪代码)?

    • 信号量实现
    struct semaphore {
      int value;
      struct spinlock lock;
      struct proc *queue[NPROC]; // 进程等待队列,这是一个循环队列
      int end;   // 队尾
      int start; // 队头
    };
    
    // 初始化信号量
    void sem_init(struct semaphore *s, int value) {
      s->value = value;
      initlock(&s->lock, "semaphore_lock");
      end = start = 0;
    }
    
    void sem_wait(struct semaphore *s) {
      acquire(&s->lock); // 竞争锁,如果竞争不到进入自旋
      s->value--; 
      if (s->value < 0) {
        s->queue[s->end] = myproc(); // myproc()获取当前进程, 放入队尾
        s->end = (s->end + 1) % NPROC; // 循环队列计算新的队尾
        // 1. 释放锁(下一个sem_wait的进程才能进入acquire),
        // 2. 然后进入睡眠等待, 被唤醒时重新竞争锁
        sleep(myproc(), &s->lock); 
      }
      release(&s->lock);
    }
    
    void sem_signal(struct semaphore *s) {
      acquire(&s->lock); // 竞争锁
      s->value++;
      if (s->value <= 0) {
        wakeup(s->queue[s->start]); // 唤醒循环队列头的进程
        s->queue[s->start] = 0; 
        s->start = (s->start + 1) % NPROC; // 重新计算队头
      }
      release(&s->lock);
    }
    
    // proc.h
    // Per-process state
    struct proc {
      uint sz;                     // Size of process memory (bytes)
      pde_t* pgdir;                // Page table
      char *kstack;                // Bottom of kernel stack for this process
      enum procstate state;        // Process state
      volatile int pid;            // Process ID
      struct proc *parent;         // Parent process
      struct trapframe *tf;        // Trap frame for current syscall
      struct context *context;     // swtch() here to run process
      void *chan;                  // If non-zero, sleeping on chan
      int killed;                  // If non-zero, have been killed
      struct file *ofile[NOFILE];  // Open files
      struct inode *cwd;           // Current directory
      char name[16];               // Process name (debugging)
    };
    

    参考文献

    [1] xv6锁-博客园
    [2] xv6锁-xchg
    [3] xv6锁-CSDN
    [4] xv6整体报告-百度文库

  • 相关阅读:
    c# 之 事务
    Asp.Net 之 js/jquery获取服务器端控件
    产品能力框架图
    软件测试职业发展规划图
    Loadrunner 工作原理图
    Linux内核性能测试工具全景图
    Linux 性能监控分析
    软件藏宝图
    Haproxy 8种算法+Session共享
    Keepalived+Haproxy实现高可用负载均衡
  • 原文地址:https://www.cnblogs.com/icoty23/p/10993878.html
Copyright © 2011-2022 走看看