zoukankan      html  css  js  c++  java
  • R-散点密度图

    有时候看见很多论文中有那种散点密度图,还有拟合线,感觉瞬间一张图里面信息很丰富,特别是针对数据很多的时候,散点图上的点就会存在很多重叠,这时候比较难以看出其分布特征,所以叠加点密度的可视化效果还是很有必要的。

    1 基本

    基本的R语言:使用plot()函数即可

    # Create data
    data = data.frame(
      x=seq(1:100) + 0.1*seq(1:100)*sample(c(1:10) , 100 , replace=T),
      y=seq(1:100) + 0.2*seq(1:100)*sample(c(1:10) , 100 , replace=T)
    )
    
    # Basic scatterplot
    plot(x=data$x, y=data$y)

    自定义:

    • cex: circle size
    • xlim and ylim: limits of the X and Y axis
    • pch: shape of markers. See all here.
    • xlab and ylab: X and Y axis labels
    • col: marker color
    • main: chart title
    # Basic scatterplot
    plot(data$x, data$y,
         xlim=c(0,250) , ylim=c(0,250), 
         pch=18, 
         cex=2, 
         col="#69b3a2",
         xlab="value of X", ylab="value of Y",
         main="A simple scatterplot"
         )
    

     使用 ggplot2 包

    • 1 - provide a dataframe 提供数据框
    • 2 - tell which variable to show on x and y axis 设置x和y变量
    • 3 - add a geom_point() to show points. 显示点
    # library
    library(ggplot2)
     
    # The iris dataset is provided natively by R
    
    # basic scatterplot
    ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width)) + geom_point()
    

     针对存在的问题:

    # Library
    library(tidyverse)
     
    # Data
    a <- data.frame( x=rnorm(20000, 10, 1.9), y=rnorm(20000, 10, 1.2) )
    b <- data.frame( x=rnorm(20000, 14.5, 1.9), y=rnorm(20000, 14.5, 1.9) )
    c <- data.frame( x=rnorm(20000, 9.5, 1.9), y=rnorm(20000, 15.5, 1.9) )
    data <- rbind(a,b,c) #创建数据集
     
     
    # Basic scatterplot
    ggplot(data, aes(x=x,y=y))+geo_point()
    

    2 方法

    运用2D直方图的概念来显示,原理是把整张图像分为很多个小方块,分别计算落在每个方块中的点的数量,再以2D直方图的原理显示出来,以颜色的深浅来代表点的密集程度

    这种的缺点可能是不够平滑

    # 2d histogram with default option
    ggplot(data, aes(x=x, y=y) ) + geom_bin2d() + theme_bw()
     
    # Bin size control + color palette
    ggplot(data, aes(x=x, y=y) ) + geom_bin2d(bins = 70) +
      scale_fill_continuous(type = "viridis") + theme_bw()#通过bins控制划分方块的大小,即粒度大小,同时可以设置颜色条的色彩模式
    

     同理,如果划分为六边形的话:

    # Hexbin chart with default option
    ggplot(data, aes(x=x, y=y) ) +
      geom_hex() +
      theme_bw()
     
    # Bin size control + color palette
    ggplot(data, aes(x=x, y=y) ) +
      geom_hex(bins = 70) +
      scale_fill_continuous(type = "viridis") +
      theme_bw()
    

    使用密度图来代替2D直方图显示

    # Show the contour only 只显示等高线
    ggplot(data, aes(x=x, y=y) ) +
      geom_density_2d()
     
    # Show the area only 只显示着色的分级区域
    ggplot(data, aes(x=x, y=y) ) +
      stat_density_2d(aes(fill = ..level..), geom = "polygon")
     
    # Area + contour 叠加
    ggplot(data, aes(x=x, y=y) ) +
      stat_density_2d(aes(fill = ..level..), geom = "polygon", colour="white")
     
    # Using raster 栅格
    ggplot(data, aes(x=x, y=y) ) +
      stat_density_2d(aes(fill = ..density..), geom = "raster", contour = FALSE) +
      scale_x_continuous(expand = c(0, 0)) +
      scale_y_continuous(expand = c(0, 0)) +
      theme(
        legend.position='none'
      )
    

    自定义色彩风格:

    使用scale_fill_distiller()函数

    # Call the palette with a number
    ggplot(data, aes(x=x, y=y) ) +
      stat_density_2d(aes(fill = ..density..), geom = "raster", contour = FALSE) +
      scale_fill_distiller(palette=4, direction=-1) + #direction表示是否改变色度方向 palette代表不同风格
      scale_x_continuous(expand = c(0, 0)) +
      scale_y_continuous(expand = c(0, 0)) +
      theme(
        legend.position='none'
      )
    

    案例:

    library(MASS)
    library(ggplot2)
    
    n <- 1000
    x <- mvrnorm(n, mu=c(.5,2.5), Sigma=matrix(c(1,.6,.6,1), ncol=2))
    df = data.frame(x); colnames(df) = c("x","y")
     
    commonTheme = list(labs(color="Density",fill="Density",
                            x="RNA-seq Expression",
                            y="Microarray Expression"),
                       theme_bw(),
                       theme(legend.position=c(0,1),
                             legend.justification=c(0,1)))
     
    ggplot(data=df,aes(x,y)) + 
      geom_density2d(aes(colour=..level..)) + 
      scale_colour_gradient(low="green",high="red") + 
      geom_point() + commonTheme
    

     添加拟合线与平滑 填补颜色

    ggplot(data=df,aes(x,y)) + 
      stat_density2d(aes(fill=..level..,alpha=..level..),geom='polygon',colour='black') + 
      scale_fill_continuous(low="green",high="red") +
      geom_smooth(method=lm,linetype=2,colour="red",se=F) + #线性拟合
      guides(alpha="none") +
      geom_point() + commonTheme
    

     使用smoothScatter函数

    smoothScatter 产生散点图平滑的点密度分布,通过核密度进行估算

    smoothScatter(x, y = NULL, nbin = 128, bandwidth,
                  colramp = colorRampPalette(c("white", blues9)),
                  nrpoints = 100, ret.selection = FALSE,
                  pch = ".", cex = 1, col = "black",
                  transformation = function(x) x^.25,
                  postPlotHook = box,
                  xlab = NULL, ylab = NULL, xlim, ylim,
                  xaxs = par("xaxs"), yaxs = par("yaxs"), ...)

     具体参数作用参考:https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/smoothScatter.html

    ## A largish data set
    n <- 10000
    x1  <- matrix(rnorm(n), ncol = 2)
    x2  <- matrix(rnorm(n, mean = 3, sd = 1.5), ncol = 2)
    x   <- rbind(x1, x2)
    
    oldpar <- par(mfrow = c(2, 2), mar=.1+c(3,3,1,1), mgp = c(1.5, 0.5, 0))
    smoothScatter(x, nrpoints = 0) #不显示边界的相对比较异常的点 如果要显示所有的点 nrpoints = Inf
    smoothScatter(x)
    

      换一种颜色方案

    ## a different color scheme:
    Lab.palette <- colorRampPalette(c("blue", "orange", "red"), space = "Lab")
    i.s <- smoothScatter(x, colramp = Lab.palette,
                         ## pch=NA: do not draw them
                         nrpoints = 250, ret.selection=TRUE)
    

     显示异常点的标签

    ## label the 20 very lowest-density points,the "outliers" (with obs.number):
    i.20 <- i.s[1:20]
    text(x[i.20,], labels = i.20, cex= 0.75)
    

    没有那么“聚集”

    ## somewhat similar, using identical smoothing computations,
    ## but considerably *less* efficient for really large data:
    plot(x, col = densCols(x), pch = 20)
    

    先计算点密度 再显示

    # generare random data, swap this for yours :-)!
    n <- 10000
    x <- rnorm(n)
    y <- rnorm(n)
    DF <- data.frame(x,y)
     
    # Calculate 2d density over a grid
    library(MASS)
    dens <- kde2d(x,y)
     
    # create a new data frame of that 2d density grid
    # (needs checking that I haven't stuffed up the order here of z?)
    gr <- data.frame(with(dens, expand.grid(x,y)), as.vector(dens$z))
    names(gr) <- c("xgr", "ygr", "zgr")
     
    # Fit a model
    mod <- loess(zgr~xgr*ygr, data=gr)
     
    # Apply the model to the original data to estimate density at that point
    DF$pointdens <- predict(mod, newdata=data.frame(xgr=x, ygr=y))
     
    # Draw plot
    library(ggplot2)
    ggplot(DF, aes(x=x,y=y, color=pointdens)) + geom_point() + scale_colour_gradientn(colours = rainbow(5)) + theme_bw()
    

     使用热度散点函数

    install.packages("LSD") #先下载LSD包
    
    n <- 10000
    x <- rnorm(n)
    y <- rnorm(n)
    DF <- data.frame(x,y)
    library(LSD)
    heatscatter(DF[,1],DF[,2])
    

    详细用法参考:https://www.imsbio.co.jp/RGM/R_rdfile?f=LSD/man/heatscatter.Rd&d=R_CC

    heatscatter(x, y, pch = 19, cexplot = 0.5, nrcol = 30, grid = 100,
      colpal = "heat", simulate = FALSE, daltonize = FALSE, cvd = "p",
      alpha = NULL, rev = FALSE, xlim = NULL, ylim = NULL, xlab = NULL,
      ylab = NULL, main = "heatscatter", cor = FALSE, method = "spearman",
      only = "none", add.contour = FALSE, nlevels = 10,
      color.contour = "black", greyscale = FALSE, log = "", ...)
    points = 10^4
    x = c(rnorm(points/2),rnorm(points/2)+4)
    y = x + rnorm(points,sd=0.8)
    x = sign(x)*abs(x)^1.3
    
    heatscatter(x,y,colpal="bl2gr2rd",main="bl2gr2rd",cor=FALSE)
    
    heatscatter(x,y,cor=FALSE,add.contour=TRUE,color.contour="red",greyscale=TRUE)
    
    heatscatter(x,y,colpal="spectral",cor=FALSE,add.contour=TRUE)
    

     

     

    利用R基本功能

    # adopted from https://stackoverflow.com/questions/17093935/r-scatter-plot-symbol-color-represents-number-of-overlapping-points
    ## Data in a data.frame
    x1 <- rnorm(n=1E3, sd=2)
    x2 <- x1*1.2 + rnorm(n=1E3, sd=2)
    df <- data.frame(x1,x2)
    
    ## Use densCols() output to get density at each point 得到点密度
    x <- densCols(x1,x2, colramp=colorRampPalette(c("black", "white")))
    df$dens <- col2rgb(x)[1,] + 1L
    
    ## Map densities to colors 将点密度与不同颜色关联
    cols <-  colorRampPalette(c("#000099", "#00FEFF", "#45FE4F", 
                                "#FCFF00", "#FF9400", "#FF3100"))(300)
    df$col <- cols[df$dens]
    
    par(family ='Times New Roman') 
    ## Plot it, reordering rows so that densest points are plotted on top
    plot(x2~x1, data=df[order(df$dens),], pch=20, col=col, cex=2)
    
    
    # Function to plot color bar for legend
    color.bar <- function(lut, max, min=0 , nticks=11, ticks=seq(min, max, len=nticks), title='') {
      scale = (length(lut)-1)/(max-min)
      
      dev.new(width=1.75, height=5)
      plot(c(0,10), c(min,max), type='n', bty='n', xaxt='n', xlab='', yaxt='n', ylab='', main=title)
      axis(2, ticks, las=1)
      for (i in 1:(length(lut)-1)) {
        y = (i-1)/scale + min
        rect(0,y,10,y+1/scale, col=lut[i], border=NA)
      }
    }
    
    cols <-  colorRampPalette(c("#000099", "#00FEFF", "#45FE4F", 
                                "#FCFF00", "#FF9400", "#FF3100"))(300)
    
    color.bar(cols, 300)
    

    参考:

    https://www.plob.org/article/15849.html

    http://wap.sciencenet.cn/blog-526092-1205095.html?mobile=1

    https://www.r-graph-gallery.com/2d-density-plot-with-ggplot2.html

  • 相关阅读:
    函数1
    函数
    VC++中GDI和GDI+ 的坐标系统介绍
    CWnd与HWND的区别与转换
    VC++下的Unicode编程
    VS 和Visual Assist X快捷键(转)
    VC中CRect类的简单介绍
    ListControl的用法
    VC:GetWindowRect、GetClientRect、ScreenToClient与ClientToScreen
    VC中CDC与HDC的区别以及二者之间的转换
  • 原文地址:https://www.cnblogs.com/icydengyw/p/12309455.html
Copyright © 2011-2022 走看看