zoukankan      html  css  js  c++  java
  • Genetic Algorithms with python 学习笔记ch1

    Hello World问题

    已知一个字母字符的集合,利用其中的字符和字母猜测出设定的密码(例如Hello world)。

    1.初次尝试

    字符集合与猜测目标密码如下:

    geneSet = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
    target = "Hello World!"
    

    下面这个函数表示产生一个最初的猜测:

    import random
    
    def generate_parent(length):
        genes = []
        while len(genes) < length:
            sampleSize = min(length - len(genes), len(geneSet))
            genes.extend(random.sample(geneSet, sampleSize))
        return ''.join(genes)
    

    为了便于快速猜测出目标密码,需要给出一个反馈来告诉猜测者当前猜测是否更接近答案,如果不是,就可以舍弃该猜测。下面的函数用来计算适应值,它反映当前猜测和目标密码有多少个相同的字母:

    def get_fitness(guess):
        return sum(1 for expected, actual in zip(target, guess)
                   if expected == actual)
    

    下面这个函数为变异,即对之前的猜测中的某个字母替换,得到新的猜测。

    def mutate(parent):
        index = random.randrange(0,len(parent))
        childGenes = list(parent)
        newGene, alternate = random.sample(geneSet, 2)
        childGenes[index] = alternate 
                            if childGenes[index] == newGene 
                            else newGene
    
        return ''.join(childGenes)
    

    下面这个函数为输出过程中的结果,输出其对应的猜测字符串、该猜测的适应值、从开始到本次猜测结束的时间。

    import datetime
    
    def display(guess, startTime):
        timeDiff = datetime.datetime.now() - startTime
        fitness = get_fitness(guess)
        print("{}	{}	{}".format(guess, fitness, timeDiff))
    

    下面是主函数部分,主要包含产生一个初始猜测、以及重要的一个循环。循环的过程包括:产生一个猜测;计算该猜测的适应值;将该猜测的适应值与之前最好的适应值相比较;保留最高的适应值。

    
    if __name__ == "__main__":
        random.seed()
        startTime = datetime.datetime.now()
        bestParent = generate_parent(len(target))
        bestFitness = get_fitness(bestParent)
        display(bestParent, startTime)
    
        while True:
            child = mutate(bestParent)
            childFitness = get_fitness(child)
            if bestFitness >= childFitness:
                continue
            display(child, startTime)
            if childFitness >= len(bestParent):
                break
            bestParent = child
            bestFitness = childFitness
    

    guessPassword.py完整代码:

    import random
    import datetime
    
    geneSet = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
    target = "Hello World!"
    
    def generate_parent(length):
        genes = []
        while len(genes) < length:
            sampleSize = min(length - len(genes), len(geneSet))
            genes.extend(random.sample(geneSet, sampleSize))
        return ''.join(genes)
    
    def get_fitness(guess):
        return sum(1 for expected, actual in zip(target, guess)
                   if expected == actual)
    
    def mutate(parent):
        index = random.randrange(0,len(parent))
        childGenes = list(parent)
        newGene, alternate = random.sample(geneSet, 2)
        childGenes[index] = alternate 
                            if childGenes[index] == newGene 
                            else newGene
    
        return ''.join(childGenes)
    
    def display(guess, startTime):
        timeDiff = datetime.datetime.now() - startTime
        fitness = get_fitness(guess)
        print("{}	{}	{}".format(guess, fitness, timeDiff))
    
    if __name__ == "__main__":
        random.seed()
        startTime = datetime.datetime.now()
        bestParent = generate_parent(len(target))
        bestFitness = get_fitness(bestParent)
        display(bestParent, startTime)
    
        while True:
            child = mutate(bestParent)
            childFitness = get_fitness(child)
            if bestFitness >= childFitness:
                continue
            display(child, startTime)
            if childFitness >= len(bestParent):
                break
            bestParent = child
            bestFitness = childFitness
    
    

    代码执行结果如下图:
    image.png

    2.可复用的代码

    首先编写一个可以复用的进行密码猜测的文件 genetic.py ,其完整代码如下:

    import random
    
    def _generate_parent(length, genSet):
        genes = []
        while len(genes) < length:
            sampleSize = min(length - len(genes), len(genSet))
            genes.extend(random.sample(genSet,sampleSize))
        return ''.join(genes)
    
    def _mutate(parent, geneSet):
        index = random.randrange(0, len(parent))
        childGenes = list(parent)
        newGene, alternate = random.sample(geneSet, 2)
        childGenes[index] = alternate 
                            if childGenes[index] == newGene 
                            else newGene
        return ''.join(childGenes)
    
    def get_best(get_fitness, targenLen, optimalFitness, geneSet, dispaly):
        random.seed()
        bestParent = _generate_parent(targenLen, geneSet)
        bestFitness = get_fitness(bestParent)
        dispaly(bestParent)
        if bestFitness >= optimalFitness:
            return  bestParent
    
        while True:
            child = _mutate(bestParent,geneSet)
            childFitness = get_fitness(child)
    
            if bestFitness >= childFitness:
                continue
            dispaly(child)
            if childFitness >= optimalFitness:
                return child
            bestParent = child
            bestFitness = childFitness
    

    其中,函数_generate_parent和函数_mutate两个函数类型为python中的protected,只能由模块中的其他函数调用。对于函数get_best,其形参中的get_fitness,和形参display为参数只有猜测产生的字符串,因为get_best不需要知道目标target是什么,也不需要知道过了多少时间。
    上面的代码由文件guess_Password.py中的函数调用,其代码如下:

    import datetime
    import genetic
    
    def test_Hello_World():
        target = "Hello World!"
        guess_password(target)
    
    def guess_password(target):
        geneSet = " abcdefghigklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
        startTime = datetime.datetime.now()
    
        def fnGetFitness(guess):
            return get_fitness(guess, target)
    
        def fnDisplay(genes):
            display(genes, target, startTime)
    
        optimalFitness = len(target)
        genetic.get_best(fnGetFitness, len(target), optimalFitness, geneSet, fnDisplay)
    
    
    def display(genes, target, startime):
        timeDiff = datetime.datetime.now() - startime
        fitness = get_fitness(genes, target)
        print("{}	{}	{}".format(genes, fitness, timeDiff))
    
    def get_fitness(genes, target):
        return sum(1 for expected, actual in zip(target, genes)
                   if expected == actual)
    
    if __name__ == '__main__':
        test_Hello_World()
    

    3.使用python的unittest架构

    使用unittest架构,需要讲主要测试功能一如unittest.TestCase继承的类中。但是必须将self作为每个函数的第一个参数添加,因为它们将属于测试类。
    这里只需要修改guessPassword.py修改后的整体代码如下:

    import datetime
    import genetic
    import unittest
    
    class GuessPasswordTests(unittest.TestCase):
        geneSet = " abcdefghigklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
        def test_Hello_World(self):
            target = "Hello World!"
            self.guess_password(target)
    
        def guess_password(self, target):
    
            startTime = datetime.datetime.now()
    
            def fnGetFitness(guess):
                return get_fitness(guess, target)
    
            def fnDisplay(genes):
                display(genes, target, startTime)
    
            optimalFitness = len(target)
            best = genetic.get_best(fnGetFitness, len(target), optimalFitness, self.geneSet, fnDisplay)
            self.assertEqual(best,target)
    
    def display(genes, target, startime):
        timeDiff = datetime.datetime.now() - startime
        fitness = get_fitness(genes, target)
        print("{}	{}	{}".format(genes, fitness, timeDiff))
    
    def get_fitness(genes, target):
        return sum(1 for expected, actual in zip(target, genes)
                   if expected == actual)
    
    if __name__ == '__main__':
        unittest.main()
    

    genetic.py的内容不变,为了方便,再次粘贴如下:

    import random
    
    def _generate_parent(length, genSet):
        genes = []
        while len(genes) < length:
            sampleSize = min(length - len(genes), len(genSet))
            genes.extend(random.sample(genSet,sampleSize))
        return ''.join(genes)
    
    def _mutate(parent, geneSet):
        index = random.randrange(0, len(parent))
        childGenes = list(parent)
        newGene, alternate = random.sample(geneSet, 2)
        childGenes[index] = alternate 
                            if childGenes[index] == newGene 
                            else newGene
        return ''.join(childGenes)
    
    def get_best(get_fitness, targenLen, optimalFitness, geneSet, dispaly):
        random.seed()
        bestParent = _generate_parent(targenLen, geneSet)
        bestFitness = get_fitness(bestParent)
        dispaly(bestParent)
        if bestFitness >= optimalFitness:
            return  bestParent
    
        while True:
            child = _mutate(bestParent,geneSet)
            childFitness = get_fitness(child)
    
            if bestFitness >= childFitness:
                continue
            dispaly(child)
            if childFitness >= optimalFitness:
                return child
            bestParent = child
            bestFitness = childFitness
    

    此外,改程序的命令行测试输入及输出如下:
    image.png

    4.测试更长的密码

    在上述guessPassword.py中的GuessPasswordTests类中加入一个函数,代码如下:

       def test_For_I_am_fearfully_and_wonderfully_made(self):
           target = "For I am fearfully and wonderfully made."
           self.guess_password(target)
    

    部分执行结果如下图:
    image.png

    5.引入染色体Chromosome类

    这里引入染色体类,其中有Genes和Fitness两个属性,这会是genetic引擎更加灵活。
    其中 genetic.py 更改之后的整体代码如下:

    import random
    
    class Chromosome:
        def __init__(self, genes, fitness):
            self.Genes = genes
            self.Fitness = fitness
    
    def _generate_parent(length, genSet, get_fitness):
        genes = []
        while len(genes) < length:
            sampleSize = min(length - len(genes), len(genSet))
            genes.extend(random.sample(genSet,sampleSize))
        genes = ''.join(genes)
        fitness = get_fitness(genes)
        return Chromosome(genes, fitness)
    
    def _mutate(parent, geneSet, get_fitness):
        index = random.randrange(0, len(parent.Genes))
        childGenes = list(parent.Genes)
        newGene, alternate = random.sample(geneSet, 2)
        childGenes[index] = alternate 
                            if childGenes[index] == newGene 
                            else newGene
        genes = ''.join(childGenes)
        fitness = get_fitness(genes)
        return Chromosome(genes,fitness)
    
    def get_best(get_fitness, targenLen, optimalFitness, geneSet, dispaly):
        random.seed()
        bestParent = _generate_parent(targenLen, geneSet, get_fitness)
        dispaly(bestParent)
        if bestParent.Fitness >= optimalFitness:
            return  bestParent
    
        while True:
            child = _mutate(bestParent, geneSet, get_fitness)
    
            if bestParent.Fitness >= child.Fitness:
                continue
            dispaly(child)
            if child.Fitness >= optimalFitness:
                return child
            bestParent = child
    
    

    更改后的 guessPAssword.py 整体代码如下:

    import datetime
    import genetic
    import unittest
    
    class GuessPasswordTests(unittest.TestCase):
        geneSet = " abcdefghigklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!."
        def test_Hello_World(self):
            target = "Hello World!"
            self.guess_password(target)
    
        def test_For_I_am_fearfully_and_wonderfully_made(self):
            target = "For I am fearfully and wonderfully made."
            self.guess_password(target)
    
        def guess_password(self, target):
    
            startTime = datetime.datetime.now()
    
            def fnGetFitness(guess):
                return get_fitness(guess, target)
    
            def fnDisplay(candidate):
                display(candidate, startTime)
    
            optimalFitness = len(target)
            best = genetic.get_best(fnGetFitness, len(target), optimalFitness, self.geneSet, fnDisplay)
            self.assertEqual(best.Genes,target)
    
    def display(candidate, startime):
        timeDiff = datetime.datetime.now() - startime
        print("{}	{}	{}".format(candidate.Genes, candidate.Fitness, timeDiff))
    
    def get_fitness(genes, target):
        return sum(1 for expected, actual in zip(target, genes)
                   if expected == actual)
    
    if __name__ == '__main__':
        unittest.main()
    

    6.Benchmarking

    接下来为genetic增加对benchmarkng的支持,因为它能够使你知道引擎寻找解的平均时间和标准差。修改后的 genetic.py 完整代码如下:

    import random
    import statistics
    import time
    import sys
    
    def _generate_parent(length, geneSet, get_fitness):
        genes = []
        while len(genes) < length:
            sampleSize = min(length - len(genes), len(geneSet))
            genes.extend(random.sample(geneSet, sampleSize))
        genes = ''.join(genes)
        fitness = get_fitness(genes)
        return Chromosome(genes, fitness)
    
    
    def _mutate(parent, geneSet, get_fitness):
        index = random.randrange(0, len(parent.Genes))
        childGenes = list(parent.Genes)
        newGene, alternate = random.sample(geneSet, 2)
        childGenes[index] = alternate if newGene == childGenes[index] else newGene
        genes = ''.join(childGenes)
        fitness = get_fitness(genes)
        return Chromosome(genes, fitness)
    
    
    def get_best(get_fitness, targetLen, optimalFitness, geneSet, display):
        random.seed()
        bestParent = _generate_parent(targetLen, geneSet, get_fitness)
        display(bestParent)
        if bestParent.Fitness >= optimalFitness:
            return bestParent
        while True:
            child = _mutate(bestParent, geneSet, get_fitness)
            if bestParent.Fitness >= child.Fitness:
                continue
            display(child)
            if child.Fitness >= optimalFitness:
                return child
            bestParent = child
    
    
    class Chromosome:
        def __init__(self, genes, fitness):
            self.Genes = genes
            self.Fitness = fitness
    
    
    class Benchmark:
        @staticmethod
        def run(function):
            timings = []
            stdout = sys.stdout
            for i in range(100):
                sys.stdout = None
                startTime = time.time()
                function()
                seconds = time.time() - startTime
                sys.stdout = stdout
                timings.append(seconds)
                mean = statistics.mean(timings)
                if i<10 or i % 10 == 9:
                    print("{} {:3.2f} {:3.2f}".format(
                        1 + i, mean,
                        statistics.stdev(timings, mean)
                        if i > 1 else 0))
    

    修改后的 guessPassword.py 完整代码如下:

    import datetime
    import unittest
    
    import genetic
    
    
    def get_fitness(guess, target):
        return sum(1 for expected, actual in zip(target, guess)
                   if expected == actual)
    
    
    def display(candidate, startTime):
        timeDiff = datetime.datetime.now() - startTime
        print("{}	{}	{}".format(
            candidate.Genes, candidate.Fitness, timeDiff))
    
    
    class GuessPasswordTests(unittest.TestCase):
        geneset = " abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!.,"
    
        def For_I_am_fearfully_and_wonderfully_made(self):
            target = "For I am fearfully and wonderfully made."
            self.guess_password(target)
    
        def guess_password(self, target):
            startTime = datetime.datetime.now()
    
            def fnGetFitness(genes):
                return get_fitness(genes, target)
    
            def fnDisplay(candidate):
                display(candidate, startTime)
    
            optimalFitness = len(target)
            best = genetic.get_best(fnGetFitness, len(target), optimalFitness,
                                    self.geneset, fnDisplay)
            self.assertEqual(best.Genes, target)
    
    
    
        def test_benchmark(self):
            genetic.Benchmark.run(self.For_I_am_fearfully_and_wonderfully_made)
    
    
    if __name__ == '__main__':
        unittest.main()
    
  • 相关阅读:
    C#中的“装箱”与“拆箱”[转贴]
    C#中的委托和事件[转帖]
    ASP.NET的四种错误机制[转帖]
    读技术书的技巧
    《AdvancED ActionScript 3.0 Animation》读书笔记(2) —— 2.5d
    读《JavaScript大师Nicholas C. Zakas谈TypeScript》有感,也谈编译js问题
    《游戏人工智能编程》读书笔记 —— 向量的归一和点乘
    浏览器图形渲染性能测试
    对对碰游戏demo
    A星寻路demo
  • 原文地址:https://www.cnblogs.com/idella/p/13357475.html
Copyright © 2011-2022 走看看