zoukankan      html  css  js  c++  java
  • 1.2练习题解答

     

    15,证明(p→q) Λ (q→r) → (p→r)是永真式

    证明过程

    (p→q) Λ (q→r) → (p→r)
    =¬[(p→q) Λ (q→r)] (p→r) 设x=(p→q)Λ(q→r),y=(p→r),x→y=¬xVy
    =[¬(p→q) V ¬(q→r)] V (p→r) 根据德摩根定律,展开¬[(p→q)Λ(q→r)]
    =¬(p→q) V [¬(q→r) (p→r)] 根据结合律
    =¬(p→q) V [¬(¬q V r) V(¬p V r)] 将x→y变换为¬xVy
    =¬(p→q) V [(q Λ ¬r) V ¬p V r] 根据德摩根定律,展开¬(¬qVr)
    =¬(p→q) V [(q Λ ¬r) V r] V ¬p 根据结合律
    =¬(p→q) V [(q V r) Λ (¬r V r)] V¬p 根据分配律展开(qΛ¬r)Vr
    =¬(p→q) V [(q V r) Λ T] V ¬p 根据否定律,¬rVr=T
    =¬(p→q) V (q V r) V ¬p 根据恒等律,(qVr)ΛT=qVr
    =¬(p→q) V (¬p V q) V r 根据交换律
    =¬(p→q) V (p→q) V r
    =TVr 根据否定率¬(p→q)V(p→q)=T
    =T 根据支配律


     26,只用运算符↓构造一个等价于p→q的命题

    根据NOR的定义可以知道p↓q等价于¬(p V q)
    而根据幂等律p=p V p,所以¬p=¬(p V p)=p ↓ p
    又已知p→q=¬p V q
    先用↓构造简单p V q
    p V q
    =¬[¬(p V q)]

    =¬(p↓q)
    =(p ↓ q) ↓ (p ↓ q) 上面已经证明过¬p=p ↓ p
    所以¬p V q
    =(¬p ↓ q) ↓ (¬p ↓ q) 将¬p=p ↓ p代入得到
    =[(p ↓ p) ↓ q] ↓ [(p ↓ p) ↓ q]

  • 相关阅读:
    GUI起头
    最大公约数
    最小公倍数
    最大公约数、最小公倍数
    质数——筛选法
    质数——用已有质数求质数
    质数——6N±1法
    质数——1到n遍历法
    微服务的优势
    收到offer!
  • 原文地址:https://www.cnblogs.com/ifan/p/3308315.html
Copyright © 2011-2022 走看看