zoukankan      html  css  js  c++  java
  • cuda matrix tiled multiply

    假设A为3x4,B为4x3

    physical structure

    A[0,1,2,...,11];B[0,...,11]

    logical structure

    A[0,1,2,3]

    A[4,5,6,7]

    A[8,9,10,11]

    B[0,1,2]

    B[3,4,5]

    B[6,7,8]

    B[9,10,11]


    implv1

    ph=0

    threadx=0,thready=0.

    Mds[0][0] = A[0]
    Nds[0][0]=B[0]

    threadx=1,thready=0.

    Mds[0][1] = A[1]
    Nds[0][1] = B[1]

    threadx=0,thready=1

    Mds[1][0] = A[4]
    Nds[1][0] =B[3]

    threadx=1,thready=1

    Mds[1][1]=A[5]
    Nds[1][1] = B[4]

    在phase=0阶段,A[0][1][4][5]完成加载,B[0][1][3][4]完成加载

    A
    [A[0],A[1]]
    [A[4],A[5]]
    B
    [B[0],B[1]]
    [B[3],B[4]]
    

    ph=1
    threadx=0,thready=0
    Mds[0][0]=A[2]
    Nds[0][0]=B[6]

    threadx=1,thready=0
    Mds[0][1]=A[3]
    Nds[0][1]=B[7]

    threadx=0,thready=1
    Mds[1][0]=A[4+2+0]=A[6]
    Nds[1][0]=B[(2+1)*3+0]=B[9]

    threadx=1,thready=1
    Mds[1][1]=A[7]
    Nds[1][1]=B[10]

    phase=1阶段,A[2,3,6,7]完成加载,B[6,7,9,10]完成加载

    A
    [A[2],A[3]]
    [A[6],A[7]]
    B
    [B[6],B[7]]
    [B[9],B[10]]
    

    以上均符合矩阵乘法所需元素


    impl v1

    __global__ void MatrixMulKernel(float* M, float* N, float* P,
          int Width) {
    1. __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
    2. __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];
    3. int bx = blockIdx.x; int by = blockIdx.y;
    4. int tx = threadIdx.x; int ty = threadIdx.y;
          // Identify the row and column of the P element to work on
    5. int Row = by * TILE_WIDTH + ty;
    6. int Col = bx * TILE_WIDTH + tx;
    7. float Pvalue = 0;
    // Loop over the M and N tiles required to compute P element
    8. for (int ph = 0; ph < Width/TILE_WIDTH; ++ph) {
            // Collaborative loading of M and N tiles into shared memory
    9.  Mds[ty][tx] = M[Row*Width + ph*TILE_WIDTH + tx];
    10. Nds[ty][tx] = N[(ph*TILE_WIDTH + ty)*Width + Col];
    11. __syncthreads();
    12. for (int k = 0; k < TILE_WIDTH; ++k) {
    13. Pvalue += Mds[ty][k] * Nds[k][tx];
    }
    14. __syncthreads();
    }
    15. P[Row*Width + Col] = Pvalue;
    

    phase=0

    threadx=0,thready=0

    Ads[0][0]=A[0]
    Bds[0][0]=B[0]

    threadx=1,thready=0

    Ads[0][1]=A[1]
    Bds[1][0]=B[1*3]=B[3]

    threadx=0,thready=1

    Ads[1][0] = A[1*4]=A[4]
    Bds[0][1] = B[1]

    threadx=1,thready=1

    Ads[1][1]=A[14+1]=A[5]
    Bds[1][1]=B[1
    3+1]=B[4]

    phase=0后加载A[0,1,4,5] & B[0,3,1,4]

    A
    [A[0],A[1]]
    [A[4],A[5]]
    B
    [B[0],B[1]]
    [B[3],B[4]]
    

    phase=1

    threadx=0,thready=0

    Ads[0][0]=A[2]
    Bds[0][0]=B[2*3]=B[6]

    threadx=1,thready=0

    Ads[0][1]=A[2+1]=A[3]
    Bds[1][0]=B[(2+1)*3]=B[9]

    threadx=0,thready=1

    Ads[1][0]=A[14+2]=A[6]
    Bds[0][1]=B[(2)
    3+1]=B[7]

    threadx=1,thready=1

    Ads[1][1]=A[4+2+1]=A[7]
    Bds[1][1]=B[(2+1)*3+1]=B[10]

    phase=1后加载A[2,3,6,7] & B[6,9,7,10]

    A
    [A[2],A[3]]
    [A[6],A[7]]
    B
    [B[6],B[7]]
    [B[9],B[10]]
    

    impl v2

        //@@ You have to use shared memory for this MP
        __shared__ float Ads[TILE_WIDTH][TILE_WIDTH];
        __shared__ float Bds[TILE_WIDTH][TILE_WIDTH];
    
        // blockDim.x = blockDim.x = TILE_WIDTH
        int row = blockIdx.y * TILE_WIDTH + threadIdx.y;
        int col = blockIdx.x * TILE_WIDTH + threadIdx.x;
    
        // XXX 
        float p_value = 0;
        for (int phase = 0; phase < (numAColumns/TILE_WIDTH) ; phase++) {
            Ads[threadIdx.y][threadIdx.x] = A[row*numAColumns + phase*TILE_WIDTH + threadIdx.x];
            Bds[threadIdx.x][threadIdx.y] = B[(phase*TILE_WIDTH+threadIdx.x)*numBColumns + row];
            __syncthreads(); 
            for (int k=0; k<TILE_WIDTH;k++) {
                p_value += Ads[threadIdx.y][k] * Bds[k][threadIdx.x]; 
            }
            __syncthreads();
        }
        C[row*numCColumns + col] = p_value;
    

    没问题啊,为什么最后所有测试数据没有一个能过的??除非从两个点检查,1检查blockidx=1的情况,是否依然相同;2检查求和是否相同,写入内存的位置是否相同

  • 相关阅读:
    ecstore中kvstore之mongodb
    ecstore中kvstore之memcached
    ecostore搜索注意事项
    ecos的dbschema
    ecos的model
    ecos的mvcl
    ecos的app处理类
    ecos的app生命周期
    Linux系统的时间设置
    数的机器码表示——彻底弄清什么是原码、反码、补码、移码
  • 原文地址:https://www.cnblogs.com/ijpq/p/15428284.html
Copyright © 2011-2022 走看看