1. 建表
以纯文本数据建表:
create table default.calendar_table
(
day_cal date
,week_cal string
,montn_cal string
,year_cal string
)
row format delimited fields terminated by ','
stored as textfile;
若未指定为外部表(external table),则默认为托管表(managed table)。二者的区别在于load与drop操作:托管表用load data inpath
加载数据(路径可为本地目录,也可是HDFS目录),该操作会将该文件放在HDFS目录:/user/hive/warehouse/ 下;而外部表的数据是在location
中指定,一般配合partition描述数据的生成信息;drop托管表时会将元数据与/user/hive/warehouse/下的数据一起删掉,而drop外部表时只会删除元数据。将本地文件加载到托管表:
load data local inpath 'cal.csv' overwrite into table default.calendar_table;
以orc file数据建外部表表:
create external table default.ad_base
(
uid string
,adx string
,exposure string
,click string
)
partitioned by (day_time date)
stored as orc
location '/<hdfs>/<path>';
2. Partition
增加partition并指定location:
alter table DEFAULT.ad_base
add if not exists partition (day_time=date '2016-05-20')
location '2016-05-20/xxx';
重新设置partition的location:
alter table DEFAULT.ad_base
partition (day_time=date '2016-05-20')
set location 'hdfs://<path>/<to>/'; -- must be an absolute path
删除partition
alter table DEFAULT.ad_base
drop if exists partition (day_time=date '2016-05-20')
ignore protection;
查看所有的paritition,以及查看某一partition的详细信息:
show partitions ad_base;
describe formatted ad_base partition(day_time = '2016-05-20');
3. UDF
Hive的UDF非常丰富,基本能满足大部分的需求。
正则匹配获取相应字符串:
regexp_extract(b.dvc, '(.*)_(.*)', 2) as imei
复杂数据类型map、struct、指定schema的struct、array、union的构造如下:
map(key1, value1, key2, value2, ...)
struct(val1, val2, val3, ...)
named_struct(name1, val1, name2, val2, ...)
array(val1, val2, ...)
create_union(tag, val1, val2, ...)
获取复杂数据类型的某列值:
array: A[n]
map: M[key]
struct: S.x
条件判断case when,比如,在left join中指定默认值:
select uid, media,
case when b.tag is NULL then array(named_struct('tag','EMPTY', 'label','EMPTY')) else b.tag end as tags
from ad_base a
left outer join ad_tag b on (a.uid = regexp_extract(b.dvc, '(.*)_(.*)', 2) and exposure = '1');
4. UDTF
UDTF主要用来对复杂数据类型进行平铺操作,比如,explode平铺array与map,inline平铺array<struct>
;这种内置的UDTF要与lateral view配合使用:
select myCol1, col2 FROM baseTable
lateral view explode(col1) myTable1 AS myCol1;
select uid, tag, label
from ad_tag
lateral view inline(tags) tag_tb;
-- tags: array<struct<tag:string,label:string>>
5. 多维分析
Hive 提供grouping set、rollup、cube关键字进行多维数据分析,可以解决自定义的维度组合、上钻维度(n+1n+1种)组合、所有的维度组合(2n2n种)的需求。比如:
SELECT a, b, SUM( c )
FROM tab1
GROUP BY a, b GROUPING SETS ( (a, b), a, b, ( ) )
-- equivalent aggregate query with group by
SELECT a, b, SUM( c ) FROM tab1 GROUP BY a, b
UNION
SELECT a, null, SUM( c ) FROM tab1 GROUP BY a, null
UNION
SELECT null, b, SUM( c ) FROM tab1 GROUP BY null, b
UNION
SELECT null, null, SUM( c ) FROM tab1
GROUP BY a, b, c, WITH ROLLUP
-- is equivalent to
GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (a), ( ))
GROUP BY a, b, c WITH CUBE
-- is equivalent to
GROUP BY a, b, c GROUPING SETS ( (a, b, c), (a, b), (b, c), (a, c), (a), (b), (c), ( ))
此外,Hive还提供了GROUPING__ID
函数对每一组合的维度进行编号,以区分该统计属于哪一维度组合,比如:
select tag, media, grouping__id, count(*) as pv
from ad_base
group by tag, media with rollup;
以指定分隔符保存结果到本地目录:
explain
INSERT OVERWRITE LOCAL DIRECTORY '/home/<path>/<to>'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ' '
select media, count(distinct uid) as uv
from ad_base
where day_time = '2016-05-20' and exposure = '1'
group by media;