zoukankan      html  css  js  c++  java
  • Even if solipsism is true, it is unknowable

    The proposition expressed by the title is what I've found recently. Anyone who has or knows similar ideas please let me know. Other comments are also welcome.

    A paraphrase of solipsism: no one is possible to know what anyone else knows. More precisely, for any $x$ and $y$, if $x$ is not $y$ then it is impossible that $x$ knows what $y$ knows. In formula: \[\forall x\forall y(x\neq y\rightarrow\forall p\neg\Diamond(K_{x}K_{y}p\lor K_{x}\neg K_{y}p))\]

    Let's denote the formula by $S$. Assuming

    (a) $\vdash\Box\varphi\rightarrow\varphi$, we have \[\forall x\forall y(x\neq y\rightarrow\forall p(\neg K_{x}K_{y}p\land\neg K_{x}\neg K_{y}p))\]

    Let's denote it by $S'$. Thus $\vdash S\rightarrow S'$. Suppose $a\neq b$. From $S'$ it follows that

    (1) $\forall p(\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p)$, and

    (2) $\forall p(\neg K_{b}K_{a}p\land\neg K_{b}\neg K_{a}p)$.

    From (1) we have

    (3) $\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p$, which implies that

    (4) $\neg K_{a}K_{b}p$

    From (2) by substituting $K_{b}p$ for $p$ we have

    (5) $\neg K_{b}K_{a}K_{b}p\land\neg K_{b}\neg K_{a}K_{b}p$, which implies that

    (6) $\neg K_{b}\neg K_{a}K_{b}p$ Let's denote $\neg K_{a}K_{b}p$ by $P$. Then we have

    (7) $\vdash S\rightarrow P$, and

    (8) $\vdash S\rightarrow\neg K_{b}P$ Assuming the rule

    (b) $\vdash \varphi\rightarrow\psi\Longrightarrow\ \vdash K\varphi\rightarrow K\psi$,

    from (7) we have

    (9) $\vdash K_{b}S\rightarrow K_{b}P$. Assuming

    (c) $\vdash K\varphi\rightarrow\varphi$, it follows from (8) that

    (10) $\vdash K_{b}S\rightarrow\neg K_{b}P$ Now (9) and (10) together imply that

    (11) $\vdash\neg K_{b}S$. Assuming the rule

    (d) $\vdash\varphi\Longrightarrow\ \vdash\Box\varphi$, we have

    (12) $\vdash\neg\Diamond K_{b}S$ Note that $b$ can be arbitrary. Therefore,

    (13) $\vdash\forall x\neg\Diamond K_{x}S$, which means that $S$ is unknowable. In arriving at the conclusion, we only assumed (a)--(d), which are all plausible for modal logic and epistemic logic.

  • 相关阅读:
    Samba.conf案例 Ubuntu
    samba服務器下文件夾chmod權限技巧
    华为AR1220
    vsftpd.conf案例
    FTP指令说明
    Ubuntu 16.04 LTS 搭建LAMP
    记录踩过的坑——代理IP
    重写验证时重定向
    顶级页面
    文件中用WriteLine追加内容的两种方法
  • 原文地址:https://www.cnblogs.com/ilogic/p/2624451.html
Copyright © 2011-2022 走看看