zoukankan      html  css  js  c++  java
  • Even if solipsism is true, it is unknowable

    The proposition expressed by the title is what I've found recently. Anyone who has or knows similar ideas please let me know. Other comments are also welcome.

    A paraphrase of solipsism: no one is possible to know what anyone else knows. More precisely, for any $x$ and $y$, if $x$ is not $y$ then it is impossible that $x$ knows what $y$ knows. In formula: \[\forall x\forall y(x\neq y\rightarrow\forall p\neg\Diamond(K_{x}K_{y}p\lor K_{x}\neg K_{y}p))\]

    Let's denote the formula by $S$. Assuming

    (a) $\vdash\Box\varphi\rightarrow\varphi$, we have \[\forall x\forall y(x\neq y\rightarrow\forall p(\neg K_{x}K_{y}p\land\neg K_{x}\neg K_{y}p))\]

    Let's denote it by $S'$. Thus $\vdash S\rightarrow S'$. Suppose $a\neq b$. From $S'$ it follows that

    (1) $\forall p(\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p)$, and

    (2) $\forall p(\neg K_{b}K_{a}p\land\neg K_{b}\neg K_{a}p)$.

    From (1) we have

    (3) $\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p$, which implies that

    (4) $\neg K_{a}K_{b}p$

    From (2) by substituting $K_{b}p$ for $p$ we have

    (5) $\neg K_{b}K_{a}K_{b}p\land\neg K_{b}\neg K_{a}K_{b}p$, which implies that

    (6) $\neg K_{b}\neg K_{a}K_{b}p$ Let's denote $\neg K_{a}K_{b}p$ by $P$. Then we have

    (7) $\vdash S\rightarrow P$, and

    (8) $\vdash S\rightarrow\neg K_{b}P$ Assuming the rule

    (b) $\vdash \varphi\rightarrow\psi\Longrightarrow\ \vdash K\varphi\rightarrow K\psi$,

    from (7) we have

    (9) $\vdash K_{b}S\rightarrow K_{b}P$. Assuming

    (c) $\vdash K\varphi\rightarrow\varphi$, it follows from (8) that

    (10) $\vdash K_{b}S\rightarrow\neg K_{b}P$ Now (9) and (10) together imply that

    (11) $\vdash\neg K_{b}S$. Assuming the rule

    (d) $\vdash\varphi\Longrightarrow\ \vdash\Box\varphi$, we have

    (12) $\vdash\neg\Diamond K_{b}S$ Note that $b$ can be arbitrary. Therefore,

    (13) $\vdash\forall x\neg\Diamond K_{x}S$, which means that $S$ is unknowable. In arriving at the conclusion, we only assumed (a)--(d), which are all plausible for modal logic and epistemic logic.

  • 相关阅读:
    点击图片背景音乐开始暂停,图片旋转停止
    mui上下滑动
    mui中去掉li的下划线
    改变placeholder颜色的两种方法
    微信小程序开发错误代码
    重写(override)与重载(overload)的区别
    PHP面向对象 三大特性
    PHP 面向对象 基础知识
    PHP — 基础语法
    PHP 字符处理与常用函数
  • 原文地址:https://www.cnblogs.com/ilogic/p/2624451.html
Copyright © 2011-2022 走看看