zoukankan      html  css  js  c++  java
  • Even if solipsism is true, it is unknowable

    The proposition expressed by the title is what I've found recently. Anyone who has or knows similar ideas please let me know. Other comments are also welcome.

    A paraphrase of solipsism: no one is possible to know what anyone else knows. More precisely, for any $x$ and $y$, if $x$ is not $y$ then it is impossible that $x$ knows what $y$ knows. In formula: \[\forall x\forall y(x\neq y\rightarrow\forall p\neg\Diamond(K_{x}K_{y}p\lor K_{x}\neg K_{y}p))\]

    Let's denote the formula by $S$. Assuming

    (a) $\vdash\Box\varphi\rightarrow\varphi$, we have \[\forall x\forall y(x\neq y\rightarrow\forall p(\neg K_{x}K_{y}p\land\neg K_{x}\neg K_{y}p))\]

    Let's denote it by $S'$. Thus $\vdash S\rightarrow S'$. Suppose $a\neq b$. From $S'$ it follows that

    (1) $\forall p(\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p)$, and

    (2) $\forall p(\neg K_{b}K_{a}p\land\neg K_{b}\neg K_{a}p)$.

    From (1) we have

    (3) $\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p$, which implies that

    (4) $\neg K_{a}K_{b}p$

    From (2) by substituting $K_{b}p$ for $p$ we have

    (5) $\neg K_{b}K_{a}K_{b}p\land\neg K_{b}\neg K_{a}K_{b}p$, which implies that

    (6) $\neg K_{b}\neg K_{a}K_{b}p$ Let's denote $\neg K_{a}K_{b}p$ by $P$. Then we have

    (7) $\vdash S\rightarrow P$, and

    (8) $\vdash S\rightarrow\neg K_{b}P$ Assuming the rule

    (b) $\vdash \varphi\rightarrow\psi\Longrightarrow\ \vdash K\varphi\rightarrow K\psi$,

    from (7) we have

    (9) $\vdash K_{b}S\rightarrow K_{b}P$. Assuming

    (c) $\vdash K\varphi\rightarrow\varphi$, it follows from (8) that

    (10) $\vdash K_{b}S\rightarrow\neg K_{b}P$ Now (9) and (10) together imply that

    (11) $\vdash\neg K_{b}S$. Assuming the rule

    (d) $\vdash\varphi\Longrightarrow\ \vdash\Box\varphi$, we have

    (12) $\vdash\neg\Diamond K_{b}S$ Note that $b$ can be arbitrary. Therefore,

    (13) $\vdash\forall x\neg\Diamond K_{x}S$, which means that $S$ is unknowable. In arriving at the conclusion, we only assumed (a)--(d), which are all plausible for modal logic and epistemic logic.

  • 相关阅读:
    hdu 1030 Delta-wave
    POJ 1061 青蛙的约会(拓展欧几里得)
    How Many Zeroes? LightOJ
    HDU
    A
    mysql中函数cast使用
    Django基础08篇 filter&tag
    Django基础07篇 ORM操作
    Django基础06篇 分页
    Django 基础05篇 上下文管理和前端代码复用
  • 原文地址:https://www.cnblogs.com/ilogic/p/2624451.html
Copyright © 2011-2022 走看看