zoukankan      html  css  js  c++  java
  • Even if solipsism is true, it is unknowable

    The proposition expressed by the title is what I've found recently. Anyone who has or knows similar ideas please let me know. Other comments are also welcome.

    A paraphrase of solipsism: no one is possible to know what anyone else knows. More precisely, for any $x$ and $y$, if $x$ is not $y$ then it is impossible that $x$ knows what $y$ knows. In formula: \[\forall x\forall y(x\neq y\rightarrow\forall p\neg\Diamond(K_{x}K_{y}p\lor K_{x}\neg K_{y}p))\]

    Let's denote the formula by $S$. Assuming

    (a) $\vdash\Box\varphi\rightarrow\varphi$, we have \[\forall x\forall y(x\neq y\rightarrow\forall p(\neg K_{x}K_{y}p\land\neg K_{x}\neg K_{y}p))\]

    Let's denote it by $S'$. Thus $\vdash S\rightarrow S'$. Suppose $a\neq b$. From $S'$ it follows that

    (1) $\forall p(\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p)$, and

    (2) $\forall p(\neg K_{b}K_{a}p\land\neg K_{b}\neg K_{a}p)$.

    From (1) we have

    (3) $\neg K_{a}K_{b}p\land\neg K_{a}\neg K_{b}p$, which implies that

    (4) $\neg K_{a}K_{b}p$

    From (2) by substituting $K_{b}p$ for $p$ we have

    (5) $\neg K_{b}K_{a}K_{b}p\land\neg K_{b}\neg K_{a}K_{b}p$, which implies that

    (6) $\neg K_{b}\neg K_{a}K_{b}p$ Let's denote $\neg K_{a}K_{b}p$ by $P$. Then we have

    (7) $\vdash S\rightarrow P$, and

    (8) $\vdash S\rightarrow\neg K_{b}P$ Assuming the rule

    (b) $\vdash \varphi\rightarrow\psi\Longrightarrow\ \vdash K\varphi\rightarrow K\psi$,

    from (7) we have

    (9) $\vdash K_{b}S\rightarrow K_{b}P$. Assuming

    (c) $\vdash K\varphi\rightarrow\varphi$, it follows from (8) that

    (10) $\vdash K_{b}S\rightarrow\neg K_{b}P$ Now (9) and (10) together imply that

    (11) $\vdash\neg K_{b}S$. Assuming the rule

    (d) $\vdash\varphi\Longrightarrow\ \vdash\Box\varphi$, we have

    (12) $\vdash\neg\Diamond K_{b}S$ Note that $b$ can be arbitrary. Therefore,

    (13) $\vdash\forall x\neg\Diamond K_{x}S$, which means that $S$ is unknowable. In arriving at the conclusion, we only assumed (a)--(d), which are all plausible for modal logic and epistemic logic.

  • 相关阅读:
    MyCat 数据库读写分离
    python 网络编程-05 socketserver
    python 网络编程-04 文件的传输
    python 网络编程-03 粘包问题及处理
    常用模块-01getopt
    js获取自动获取本电脑IP
    js变态需求
    js正则不能输入中文和英文
    禁止输入中文
    手机号3-4-5
  • 原文地址:https://www.cnblogs.com/ilogic/p/2624451.html
Copyright © 2011-2022 走看看