zoukankan      html  css  js  c++  java
  • 分享一本关于稀疏信号处理的书给大家,也是我曾读过的教材[附下载链接]

    Sparse Signal Processing

    作者/authors

    M Azghani, F Marvasti

    摘要/abstract

    Conventional sampling techniques are based on Shannon-Nyquist theory which states that the required sampling rate for perfect recovery of a band-limited signal is at least twice its bandwidth. The band-limitedness property of the signal plays a significant role in the design of conventional sampling and reconstruction systems. As the natural signals are not necessarily band-limited, a low-pass filter is applied to the signal prior to its sampling for the purpose of antialiasing. Most of the signals we are faced with are sparse rather than band-limited (or low pass). It means that they have a small number of non-zero coefficients in some domain such as time, discrete cosine transform (DCT), discrete wavelet transform (DWT), or discrete fourier transform (DFT). This characteristic of the signal is the foundation for the emerging of a new signal sampling theory called Compressed Sampling, an extension of random sampling. In this chapter, an overview of compressed sensing, together with a summary of its popular recovery techniques, is presented. Moreover, as a well-known example of structured sparsity, the block sparse recovery problem is investigated and the related recovery approaches are illustrated.

    目录/contents

    1 Abstract Exact and Approximate Sampling Theorems ................ 1
    M.M. Dodson
    2 Sampling in Reproducing Kernel Hilbert Space ........................ 23
    J.R. Higgins
    3 Boas-Type Formulas and Sampling in Banach Spaces
    with Applications to Analysis on Manifolds ............................. 39
    Isaac Z. Pesenson
    4 On Window Methods in Generalized Shannon Sampling
    Operators .................................................................... 63
    Andi Kivinukk and Gert Tamberg
    5 Generalized Sampling Approximation for Multivariate
    Discontinuous Signals and Applications to Image Processing ......... 87
    Carlo Bardaro, Ilaria Mantellini, Rudolf Stens, Jörg Vautz,
    and Gianluca Vinti
    6 Signal and System Approximation from General Measurements ..... 115
    Holger Boche and Ullrich J. Mönich
    7 Sampling in Image Representation and Compression.................. 149
    John J. Benedetto and Alfredo Nava-Tudela
    8 Sparse Signal Processing................................................... 189
    Masoumeh Azghani and Farokh Marvasti
    9 Signal Sampling and Testing Under Noise ............................... 215
    Mirosław Pawlak
    10 Superoscillations ............................................................ 247
    Paulo J.S.G. Ferreira
    11 General Moduli of Smoothness and Approximation
    by Families of Linear Polynomial Operators ............................ 269
    K. Runovski and H.-J. Schmeisser
    12 Variation and Approximation in Multidimensional Setting
    for Mellin Integral Operators ............................................. 299
    Laura Angeloni and Gianluca Vinti
    13 The Lebesgue Constant for Sinc Approximations ...................... 319
    Frank Stenger, Hany A.M. El-Sharkawy, and Gerd Baumann
    14 Six (Seven) Problems in Frame Theory .................................. 337
    Ole Christensen
    15 Five Good Reasons for Complex-Valued Transforms
    in Image Processing ........................................................ 359
    Brigitte Forster
    16 Frequency Determination Using the Discrete Hermite Transform ... 383
    Dale H. Mugler and Stuart Clary
    17 Fractional Operators, Dirichlet Averages, and Splines................. 399
    Peter Massopust
    18 A Distributional Approach to Generalized Stochastic
    Processes on Locally Compact Abelian Groups ......................... 423
    H.G. Feichtinger and W. Hörmann
    19 On a Discrete Turán Problem for `-1 Radial Functions ............... 447
    Elena E. Berdysheva and Hubert Berens

    Download

  • 相关阅读:
    求最大公约数伪代码
    XOR加密
    20201225张晓平第五周学习
    pep9课下作业 张晓平
    20201225 张晓平《信息安全专业导论》第四周学习总结
    寻找黑客偶像 20201225张晓平
    《信息安全专业导论》第九周学习总结
    《信息安全专业导论》第八周学习总结
    《信息安全专业导论》第七周学习总结
    《信息安全专业导论》第6周学习总结
  • 原文地址:https://www.cnblogs.com/iloverain/p/5797104.html
Copyright © 2011-2022 走看看