zoukankan      html  css  js  c++  java
  • SDUT 2608:Alice and Bob

    Alice and Bob

    Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

    题目描述

        Alice and Bob like playing games very much.Today, they introduce a new game.

        There is a polynomial like this: (a0*x^(2^0)+1) * (a1 * x^(2^1)+1)*.......*(an-1 * x^(2^(n-1))+1). Then Alice ask Bob Q questions. In the expansion of the Polynomial, Given an integer P, please tell the coefficient of the x^P.

    Can you help Bob answer these questions?

    输入

    The first line of the input is a number T, which means the number of the test cases.

    For each case, the first line contains a number n, then n numbers a0, a1, .... an-1 followed in the next line. In the third line is a number Q, and then following Q numbers P.

    1 <= T <= 20

    1 <= n <= 50

    0 <= ai <= 100

    Q <= 1000

    0 <= P <= 1234567898765432

    输出

    For each question of each test case, please output the answer module 2012.

    示例输入

    122 1234

    示例输出

    20

    提示

    The expansion of the (2*x^(2^0) + 1) * (1*x^(2^1) + 1) is 1 + 2*x^1 + 1*x^2 + 2*x^3

    来源

     2013年山东省第四届ACM大学生程序设计竞赛


    #include <iostream>
    #include <math.h>
    #include <algorithm>
    using namespace std;
    int a[55];
    int kk[55];
    long long sum,summ;
    void solve(long long p,int n)
    {
        if(p>summ)
        {
            sum=0;
            return;
        }
        sum=1;
        for(int i=n-1; i>=0; i--)
        {
            if(p>=kk[i])sum=(sum*a[i])%2012,p-=kk[i];
            if(p==0)break;
        }
        if(p!=0)sum=0;
    }
    int main()
    {
        int N;
        cin>>N;
        while(N--)
        {
            int n;
            cin>>n;
            for(int i=0; i<n; i++)
            {
                cin>>a[i];
                kk[i]=pow(2,i);
                summ+=kk[i];
            }
            int k;
            cin>>k;
            while(k--)
            {
                long long p;
                cin>>p;
                solve(p,n);
                cout<<sum<<endl;
            }
        }
        return 0;
    }
    


  • 相关阅读:
    poj1273
    JavaSE入门学习23:Java面向对象之构造方法
    NOI 2015 滞后赛解题报告
    LuaInterface简单介绍
    解决在onCreate()过程中获取View的width和Height为0的4种方法
    函数指针和指针函数
    Quartz-中断正在执行的任务
    servlet3.0获取参数与文件上传代码示例
    Servlet学习:(三)Servlet3.0 上传文件
    layui 批量上传文件 + 后台 用servlet3.0接收【我】
  • 原文地址:https://www.cnblogs.com/im0qianqian/p/5989373.html
Copyright © 2011-2022 走看看