zoukankan      html  css  js  c++  java
  • HDU 1159:Common Subsequence

    Common Subsequence

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 30952    Accepted Submission(s): 14010


    Problem Description
    A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. 
    The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line. 
     

    Sample Input
    abcfbc abfcab programming contest abcd mnp
     

    Sample Output
    4 2 0
     

    Source
     

    Recommend
    Ignatius   |   We have carefully selected several similar problems for you:  1087 1176 1003 1058 1069 
     

    迷失在幽谷中的鸟儿,独自飞翔在这偌大的天地间,却不知自己该飞往何方……

    #include <stdio.h>  
    #include <string.h>  
    #include <algorithm>  
    using namespace std;  
    char s1[1000],s2[1000];  
    int dp[1000][1000];  
    int len1,len2;  
    void LCS()  
    {  
        int i,j;  
        memset(dp,0,sizeof(dp));  
        for(i = 1; i<=len1; i++)  
        {  
            for(j = 1; j<=len2; j++)  
            {  
                if(s1[i-1] == s2[j-1])  
                    dp[i][j] = dp[i-1][j-1]+1;  
                else  
                    dp[i][j] = max(dp[i-1][j],dp[i][j-1]);  
            }  
        }  
    }  
    int main()  
    {  
        while(~scanf("%s%s",s1,s2))  
        {  
            len1 = strlen(s1);  
            len2 = strlen(s2);  
            LCS();  
            printf("%d
    ",dp[len1][len2]);  
        }  
        return 0;  
    }  


  • 相关阅读:
    实验四 代码审查
    结对编程——阶段二
    实验二—结对编程第一环节
    实验一 GIT 代码版本管理
    实验五 单元测试
    实验四 代码评审
    实验三 UML建模工具的安装与使用
    实验二 结对编程第二阶段
    实验二 结对编程——第一阶段
    软件工程 实验一 GIT代码版本管理
  • 原文地址:https://www.cnblogs.com/im0qianqian/p/5989465.html
Copyright © 2011-2022 走看看