zoukankan      html  css  js  c++  java
  • POJ 1060:Modular multiplication of polynomials

    Modular multiplication of polynomials
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 4377   Accepted: 1980

    Description

    Consider polynomials whose coefficients are 0 and 1. Addition of two polynomials is achieved by 'adding' the coefficients for the corresponding powers in the polynomials. The addition of coefficients is performed by addition modulo 2, i.e., (0 + 0) mod 2 = 0, (0 + 1) mod 2 = 1, (1 + 0) mod 2 = 1, and (1 + 1) mod 2 = 0. Hence, it is the same as the exclusive-or operation. 

    (x^6 + x^4 + x^2 + x + 1) + (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 

    Subtraction of two polynomials is done similarly. Since subtraction of coefficients is performed by subtraction modulo 2 which is also the exclusive-or operation, subtraction of polynomials is identical to addition of polynomials. 

    (x^6 + x^4 + x^2 + x + 1) - (x^7 + x + 1) = x^7 + x^6 + x^4 + x^2 

    Multiplication of two polynomials is done in the usual way (of course, addition of coefficients is performed by addition modulo 2). 

    (x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) = x^13 + x^11 + x^9 + x^8 + x^6 + x^5 + x^4 + x^3 + 1 

    Multiplication of two polynomials f(x) and g(x) modulo a polynomial h(x) is the remainder of f(x)g(x) divided by h(x). 

    (x^6 + x^4 + x^2 + x + 1) (x^7 + x + 1) modulo (x^8 + x^4 + x^3 + x + 1) = x^7 + x^6 + 1 
    The largest exponent of a polynomial is called its degree. For example, the degree of x^7 + x^6 + 1 is 7. 

    Given three polynomials f(x), g(x), and h(x), you are to write a program that computes f(x)g(x) modulo h(x). 
    We assume that the degrees of both f(x) and g(x) are less than the degree of h(x). The degree of a polynomial is less than 1000. 

    Since coefficients of a polynomial are 0 or 1, a polynomial can be represented by d+1 and a bit string of length d+1, where d is the degree of the polynomial and the bit string represents the coefficients of the polynomial. For example, x^7 + x^6 + 1 can be represented by 8 1 1 0 0 0 0 0 1.

    Input

    The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of three lines that contain three polynomials f(x), g(x), and h(x), one per line. Each polynomial is represented as described above.

    Output

    The output should contain the polynomial f(x)g(x) modulo h(x), one per line.

    Sample Input

    2 
    7 1 0 1 0 1 1 1 
    8 1 0 0 0 0 0 1 1 
    9 1 0 0 0 1 1 0 1 1 
    10 1 1 0 1 0 0 1 0 0 1 
    12 1 1 0 1 0 0 1 1 0 0 1 0 
    15 1 0 1 0 1 1 0 1 1 1 1 1 0 0 1

    Sample Output

    8 1 1 0 0 0 0 0 1 
    14 1 1 0 1 1 0 0 1 1 1 0 1 0 0 

    Source

    Taejon 2001

    你  离  开  了  ,  我  的  世  界  里  只  剩  下  雨  。  。  。

    #include <iostream>
    #include<string.h>
    using namespace std;
    int pd(int sum[],int ls,int h[],int lh)
    {
        if(ls>lh)return 1;
        if(ls<lh)return -1;
        if(ls==lh)
        {
            int i;
            for(i=ls-1; i>=0; i--)
            {
                if(sum[i]&&!h[i])return 1;
                if(!sum[i]&&h[i])return -1;
            }
        }
        return 0;
    }
    int main()
    {
        int n;
        cin>>n;
        int c;
        for(c=1; c<=n; c++)
        {
            int lf,lg,lh;
            int f[1001],g[1001],h[1001];
            int i;
            cin>>lf;
            for(i=lf-1; i>=0; i--)
                cin>>f[i];
            cin>>lg;
            for(i=lg-1; i>=0; i--)
                cin>>g[i];
            cin>>lh;
            for(i=lh-1; i>=0; i--)
                cin>>h[i];
            int sum[2001];
            memset(sum,0,sizeof(sum));
            int j;
            for(i=0; i<lf; i++)
                for(j=0; j<lg; j++)
                    sum[i+j]=sum[i+j]^(f[i]&g[j]);
            int ls;
            ls=lf+lg-1;
            while(pd(sum,ls,h,lh)>=0)
            {
                int d=ls-lh;
                for(i=0; i<lh; i++)
                    sum[i+d]=sum[i+d]^h[i];
                while(ls&&!sum[ls-1])
                    --ls;
            }
            if(ls==0)ls=1;
            cout<<ls<<" ";
            for(i=ls-1; i>0; i--)
                cout<<sum[i]<<" ";
            cout<<sum[0]<<endl;
        }
        return 0;
    }


  • 相关阅读:
    判断回文字符串
    汉诺塔递归问提
    课程作业02.2
    编写一个程序,此程序从命令行接收多个数字,求和之后输出结果。
    《大道至简》第一章java伪代码分析
    《大道至简》读后感
    用户体验
    大二上学期软件工程概论学习进度表(第十五周)
    12-24个人博客
    大二上学期软件工程概论学习进度表(第十四周)
  • 原文地址:https://www.cnblogs.com/im0qianqian/p/5989590.html
Copyright © 2011-2022 走看看