zoukankan      html  css  js  c++  java
  • 1469. Find All The Lonely Nodes 独生子女节点

    In a binary tree, a lonely node is a node that is the only child of its parent node. The root of the tree is not lonely because it does not have a parent node.

    Given the root of a binary tree, return an array containing the values of all lonely nodes in the tree. Return the list in any order.

     

    Example 1:

    Input: root = [1,2,3,null,4]
    Output: [4]
    Explanation: Light blue node is the only lonely node.
    Node 1 is the root and is not lonely.
    Nodes 2 and 3 have the same parent and are not lonely.
    

    Example 2:

    Input: root = [7,1,4,6,null,5,3,null,null,null,null,null,2]
    Output: [6,2]
    Explanation: Light blue nodes are lonely nodes.
    Please remember that order doesn't matter, [2,6] is also an acceptable answer.
    

    Example 3:

    Input: root = [11,99,88,77,null,null,66,55,null,null,44,33,null,null,22]
    Output: [77,55,33,66,44,22]
    Explanation: Nodes 99 and 88 share the same parent. Node 11 is the root.
    All other nodes are lonely.
    

    Example 4:

    Input: root = [197]
    Output: []
    

    Example 5:

    Input: root = [31,null,78,null,28]
    Output: [78,28]

    怎么判断父母节点啊:利用了形态上的特殊性
    有左节点的话,右节点就为空。所以其实也就是摆弄一下左右的关系

    参考:https://leetcode.com/problems/find-all-the-lonely-nodes/discuss/669635/Java-recursive-top-down-as-parent-passes-isLonely-to-each-children

    public List<Integer> getLonelyNodes(TreeNode root) {
        List<Integer> nodes = new ArrayList<>();
        getLonelyNodes(root, false, nodes); // root is not lonely
        return nodes;
    }
    private void getLonelyNodes(TreeNode root, boolean isLonely, List<Integer> nodes) {
        if (root == null) return;
        
        if (isLonely) {
            nodes.add(root.val);
        }
        
        getLonelyNodes(root.left, root.right == null, nodes);
        getLonelyNodes(root.right, root.left == null, nodes);
    }
     
     
  • 相关阅读:
    bzoj 4660
    bzoj 4668
    二项式反演学习笔记
    bzoj 3622
    bzoj 5306
    bzoj 3625
    任意模数NTT(二)
    bzoj 4913
    bzoj 3456
    多项式问题之五——多项式exp
  • 原文地址:https://www.cnblogs.com/immiao0319/p/15028731.html
Copyright © 2011-2022 走看看