zoukankan      html  css  js  c++  java
  • 762. Prime Number of Set Bits in Binary Representation二进制中有质数个1的数量

    [抄题]:

    Given two integers L and R, find the count of numbers in the range [L, R] (inclusive) having a prime number of set bits in their binary representation.

    (Recall that the number of set bits an integer has is the number of 1s present when written in binary. For example, 21 written in binary is 10101 which has 3 set bits. Also, 1 is not a prime.)

    Example 1:

    Input: L = 6, R = 10
    Output: 4
    Explanation:
    6 -> 110 (2 set bits, 2 is prime)
    7 -> 111 (3 set bits, 3 is prime)
    9 -> 1001 (2 set bits , 2 is prime)
    10->1010 (2 set bits , 2 is prime)

     [暴力解法]:

    时间分析:

    空间分析:

     [优化后]:

    时间分析:

    空间分析:

    [奇葩输出条件]:

    [奇葩corner case]:

    [思维问题]:

    不知道怎么统计二进制数量:右移1就行了。

    质数就那么些,枚举就行了。存不存在都放在set里。

    [英文数据结构或算法,为什么不用别的数据结构或算法]:

    [一句话思路]:

    [输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

    [画图]:

    [一刷]:

    往右移一位要配合&1,才能取出最后一位。

    for (int i = num; i > 0; i >>= 1)
                    bits += i & 1;

    [二刷]:

    [三刷]:

    [四刷]:

    [五刷]:

      [五分钟肉眼debug的结果]:

    [总结]:

    质数可以单独拿出来做成set

    Set<Integer> set = new HashSet<>(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));

    [复杂度]:Time complexity: O(n) Space complexity: O(n)

    [算法思想:迭代/递归/分治/贪心]:

    [关键模板化代码]:

    [其他解法]:

    [Follow Up]:

    [LC给出的题目变变变]:

     [代码风格] :

     [是否头一次写此类driver funcion的代码] :

     [潜台词] :

    //L = 6, R = 10
    class Solution {
        public int countPrimeSetBits(int L, int R) {
            //corner case
            if (L == R) return 0;
            
            //initialization:set
            Set<Integer> set = new HashSet<>(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
            int count = 0;
            
            //for loop from l to right, add to count
            for (int num = L; num <= R; num++) {
                //count the bits
                int bits = 0;
                for (int i = num; i > 0; i >>= 1)
                    bits += i & 1;
                count = set.contains(bits) ? count + 1 : count;
            }
            
            return count;
        }
    }
    View Code
  • 相关阅读:
    Flink window机制
    用上帝视角来看待组件的设计模式
    npm和package.json那些不为常人所知的小秘密
    四步走查智能硬件异常Case
    PorterDuffXfermode 图像混合技术在漫画APP中的应用
    发布流程进化史
    新手入门Sqlalchemy
    OpenResty 最佳实践 (2)
    更新数据库触发器
    删除约束名字段名
  • 原文地址:https://www.cnblogs.com/immiao0319/p/9419897.html
Copyright © 2011-2022 走看看