Given a non-empty integer array of size n, find the minimum number of moves required to make all array elements equal, where a move is incrementing n - 1 elements by 1.
Example:
Input: [1,2,3] Output: 3 Explanation: Only three moves are needed (remember each move increments two elements): [1,2,3] => [2,3,3] => [3,4,3] => [4,4,4]
给定一个非空数组,每次让n-1个数都加1,最后使所有数字都相等,计算加1的次数。本质上这是一个数字问题,令数组中元素和为sum,数组的长度为n,最小的元素值为min,达到平衡时的数字为x,加1的次数为m,则sum + m * (n - 1) = x * n。实际上x = min + m,所以m = sum - min * n。
class Solution { public: int minMoves(vector<int>& nums) { int n = nums.size(); int sum = 0; sort(nums.begin(), nums.end()); for (int num : nums) sum += num; return sum - nums[0] * n; } }; // 82 ms
如果要使所有的数字都相等,则每个值到最大值之间的差都应该被计算为执行的次数。
class Solution { public: int minMoves(vector<int>& nums) { sort(nums.begin(), nums.end()); int res = 0; for (int i = 0; i != nums.size(); i++) res += (nums[i] - nums[0]); return res; } }; // 76 ms