zoukankan      html  css  js  c++  java
  • [LeetCode] Best Time to Buy and Sell Stock

    Say you have an array for which the ith element is the price of a given stock on day i.

    If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

    Example 1:

    Input: [7, 1, 5, 3, 6, 4]
    Output: 5
    
    max. difference = 6-1 = 5 (not 7-1 = 6, as selling price needs to be larger than buying price) 

    Example 2:

    Input: [7, 6, 4, 3, 1]
    Output: 0
    
    In this case, no transaction is done, i.e. max profit = 0.
    

    只进行一次交易,使得到最大的利润。首先想到使用蛮力算法两层for循环遍历数组。结果导致超时。

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            if (prices.size() == 0 || prices.size() == 1)
                return 0;
            int res = 0, mindiff = INT_MAX;
            for (int i = 0; i != prices.size() - 1; i++) {
                for (int j = i + 1; j != prices.size(); j++) {
                    int tmp = prices[j] - prices[i];
                    if (tmp >= 0)
                        res = max(res, tmp);
                }
            }
            return res;
        }
    };
    TLE

    接着想了一个办法就是遍历一次数组。在遍历的同时比较出最小的购买价格,然后用这一天以后的每天价格减去这个最小购买价格取最大值即可。

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            if (prices.size() == 0 || prices.size() == 1)
                return 0;
            int res = 0, minDiff = INT_MAX;
            for (int i = 0; i != prices.size(); i++) {
                minDiff = min(minDiff, prices[i]);
                res = max(res, prices[i] - minDiff);
            }
            return res;
        }
    };
    // 6 ms

    使用DP也可以求解这个问题,用dp[i]数组存储截止第i天的最大利润值。状态转移方程是 dp[i] = max(dp[i - 1], prices[i] - minPrice)

    class Solution {
    public:
        int maxProfit(vector<int>& prices) {
            if (prices.size() == 0)
                return 0;
            int n = prices.size();
            vector<int> dp(n, 0);
            int minPrice = prices[0];
            for (int i = 0; i != n; i++) {
                dp[i] = max(dp[i - 1], prices[i] - minPrice);
                minPrice = min(minPrice, prices[i]);
            }
            return dp[n - 1];
        }
    };
    // 6 ms

    相关题目:Best Time to Buy and Sell Stock II

  • 相关阅读:
    Atom实例
    订阅基础:RSS、ATOM、FEED、聚合、供稿、合烧与订阅
    XML模式:Dublin Core
    Dublin Core
    海量数据的理想存储方案
    百亿级别数据量,又需要秒级响应的案例,需要什么系统支持呢?下面介绍下大数据实时分析工具Yonghong Z-Suite
    用HiveDB横向切分MySQL数据库
    超详细单机版搭建hadoop环境图文解析
    从String.valueOf(null)说起
    js闭包理解
  • 原文地址:https://www.cnblogs.com/immjc/p/7207266.html
Copyright © 2011-2022 走看看