A matrix is Toeplitz if every diagonal from top-left to bottom-right has the same element.
Now given an M x N
matrix, return True
if and only if the matrix is Toeplitz.
Example 1:
Input: matrix = [[1,2,3,4],[5,1,2,3],[9,5,1,2]] Output: True Explanation: 1234 5123 9512 In the above grid, the diagonals are "[9]", "[5, 5]", "[1, 1, 1]", "[2, 2, 2]", "[3, 3]", "[4]", and in each diagonal all elements are the same, so the answer is True.
Example 2:
Input: matrix = [[1,2],[2,2]] Output: False Explanation: The diagonal "[1, 2]" has different elements.
Note:
matrix
will be a 2D array of integers.matrix
will have a number of rows and columns in range[1, 20]
.matrix[i][j]
will be integers in range[0, 99]
.
判断给定二维矩阵是否是Toeplitz矩阵。也就是判断二维矩阵的每组对角线元素是否相等。
首先,以矩阵的第一行为基准,判断以每个元素所在对角线的元素是否相等。
然后,以矩阵的第一列为基准,除去第一个元素,判断每个元素所在对角线的元素是否相等。
最后,如果上述判断都通过,则说明该矩阵是Toeplitz矩阵。
参考代码如下:
class Solution { public: bool isToeplitzMatrix(vector<vector<int>>& matrix) { int rows = matrix.size(); int cols = matrix[0].size(); for (int j = 0, i = 0; j < cols; j++) { int x = i, y = j; while (x < rows - 1 && y < cols - 1) { if (matrix[x][y] != matrix[x + 1][y + 1]) return false; x++; y++; } } for (int i = 1, j = 0; i < rows; i++) { int x = i, y = j; while (x < rows - 1 && y < cols - 1) { if (matrix[x][y] != matrix[x + 1][y + 1]) return false; x++; y++; } } return true; } }; // 21 ms