zoukankan      html  css  js  c++  java
  • 初级模拟电路:8-1 运算放大器概述

    回到目录

          运算放大器(operational amplifier),简称:运放(op amp),是一种集成的放大器,它的特点是电压增益非常大(通常为几万以上),同时输入阻抗高、输出阻抗低,是一种比较理想的放大器。置于为什么要在它的名称前加上“运算”两字,是因为最初这个器件是用来做计算的用的。

          现在我们以提到计算机,肯定是指数字计算机,但当年可不是这样。在上世纪40年代的时候,数字计算机的发展还刚刚起步,运算速度慢,价格昂贵,发展前景还不是很明朗。当年的很多计算工作都是靠模拟计算机来完成的,虽然模拟计算机的计算结果并不是很精确,但其结构简单,成本低廉,运算速度快,很多情况下还是可以一用的(稍后我们会介绍如何用运放来构成加减法电路、积分微分电路)。后来,人们发现运放不只是可以做运算,还可以做成很多其他有用的电路,例如:微信号放大器、比较器、振荡器、滤波器等等。

          本章我们介绍理想运放的概念及其能构成的功能电路。

    1. 理想运算放大器

          对于理想运放,我们对其做如下假设:开环电压增益为无穷大、输入阻抗为无穷大、输出阻抗为0。其模型符号如下图所示:

    图8-01.01 

          对于vi1,其输入端带一个“+”号,我们称其为:同相输入端(noninverting input)。对于vi2,其输入端带一个“-”号,我们称其为:反向输入端(inverting input)。

          理想运放有以下两个重要特点:

          [1] 输入电流为0

          [2] 两个输入端的电压差永远为0

          第(1)点输入电流为0很好理解,因为我们将运放的输入阻抗视为无穷大了,所以近似于开路。但是第2点就有些魔幻了,对于一般的电路,只有在两个端子之间连一根电线让它们短路,才能保证这两个端子的电压差永远为0。但由于第(1)点的限制,理想运放的两个输入端子中没有任何电流流过,因此不是短路;但这两个端子的电压差又时刻保持为0,就好像隔空同步一样,因此有一个专门的名称描述这一现象,称为:虚短(virtual short)。虽然在实际中没有这种魔幻的器件,但由于现在我们仅仅是抽象一个理想化模型,因此我可以接受这样的假设。后面的各种理想运放电路的分析,都是基于理想运放这两个特点展开的。(说句题外话,如果你再往后学习了信号处理与分析的相关知识,你就会理解,虚短是由于运放内部深度负反馈的设计造成的必然结果。)

          我们再来看输出,既然两个输入端的电压差为0,电压放大倍数又为无穷大,那输出电压到底是多少,0乘以无穷大是多少?这个就是理想运放的又一个魔幻点,由于0乘以无穷大可以为任意值,因此理想运放的输出也可以为任意值,具体会输出多少伏电压,完全由外电路的配置决定。

          (顺便先提一下,在实际的运放器件中,输入电流不完全为0,而是有及其微小的电流流入运放;且两个输入端子之间的电压差也不完全为0,而是有很小的几个微伏的电压。正是这个几微伏的电压,乘以几万量级的电压增益后,才能得到一个几伏~十几伏的输出电压,并且,能够输出的最大电压受到运放器件供电电压VCC的限制。)

    2. 反相放大器

          运放一个最基本的运用就是用来放大电压信号,虽说其开环电压增益为无穷大,但我们并不是要使输入信号放大无穷大倍。就像我们在前面介绍过的各种BJT与FET放大电路那样,我们要的是通过配置外围电路的电阻值,来得到我们想要的电压放大倍数。

          一个最简单的的使用运放的放大电路如下图所示(这里输入输出电压都用交流相量符号表示):

    图8-01.02 

          电路工作情况分析如下:

          电路的同相工作端接地,电压值为0V,根据理想运放的虚短特点,V1点的电压也必须为0V,然后根据欧姆定律,流过电阻R1的电流为:

          由于理想运放的输入端不能有任何电流流入,因此电流I1不会被分流,而全部流向Rf,根据欧姆定律,输出端的电压Vo为:

          电路的实际电压增益为:

          其中的负号表明,输出电压与输入电压极性相反,因此这个结构的放大电路称为:反相放大器(inverting amplifier),有时也称为:反相比例放大器。

          由于输出到输入之间有一个电阻Rf的存在,其作用是建立了输出到输入之间的一个反馈通道,不像开环增益那样是纯单向的增益,因此这个电路的实际电压增益也称为:闭环增益。闭环增益一般会比开环增益小得多,且其值不是取决于器件的原始性能,而是取决于电路的结构和配置。

    3. 同相放大器

          同相放大器的电路结构如下图所示:

    图8-01.03 

          电路工作情况分析如下:

          运放的反相输入端电压V1根据欧姆定律,计算式为:

          根据理想运放的虚短特点,V1点的电压与输入电压Vi相等,故上式可写为:

          因此电路的的实际电压增益为:

          电压增益的表达式中没有负号,输出电压与输入电压极性相同,因此这个结构的放大电路称为:同相放大器(noninverting amplifier)。

    4. 单位跟随器

          同相放大器有一种特殊的应用,称为:单位跟随器(unity follower),其结构如下图所示:

    图8-01.04 

          其输出电压Vo跟随输入电压Vi,电压放大倍数为1:

         

    回到目录

    欢迎关注本博公众号,可方便在手机端访问和索引本博技术文章:

    ( end of 8-1)


  • 相关阅读:
    Hanoi塔
    采药
    进制转换(大数)
    Load Balancing with NGINX 负载均衡算法
    upstream模块实现反向代理的功能
    epoll
    在nginx启动后,如果我们要操作nginx,要怎么做呢 别增加无谓的上下文切换 异步非阻塞的方式来处理请求 worker的个数为cpu的核数 红黑树
    粘性会话 session affinity sticky session requests from the same client to be passed to the same server in a group of servers
    负载均衡 4层协议 7层协议
    A Secure Cookie Protocol 安全cookie协议 配置服务器Cookie
  • 原文地址:https://www.cnblogs.com/initcircuit/p/13625039.html
Copyright © 2011-2022 走看看