4 Values whose Sum is 0
| Time Limit: 15000MS | Memory Limit: 228000K | |
| Total Submissions: 20015 | Accepted: 5974 | |
| Case Time Limit: 5000MS | ||
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
Source
解析:折半枚举。直接从4个数列中选择的话有n4种情况,时间复杂度太高,不可取。可以采取折半枚举的方式,将A、B、 C、 D分为AB和CD考虑,从A、B中取出a、b后,为了使总和为0则需要从C、D中取出c+d = -(a+b)。所以先将C、D取数的n2种方法枚举出来,并排好序,这样就可以运用二分搜索了,时间复杂度为O(n2logn2)。
#include <cstdio>
#include <algorithm>
#include <vector>
#define ll long long
using namespace std;
const int MAXN = 4000+5;
int a[MAXN], b[MAXN], c[MAXN], d[MAXN];
int cd[MAXN*MAXN];
int n;
pair<vector<int>::iterator, vector<int>::iterator> it;
void solve()
{
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
cd[i*n+j] = c[i]+d[j];
}
}
sort(cd, cd+n*n);
ll res = 0;
for(int i = 0; i < n; ++i){
for(int j = 0; j < n; ++j){
int c_d = -(a[i]+b[j]);
it = equal_range(cd, cd+n*n, c_d);
res += it.second-it.first;
}
}
printf("%I64d
", res);
}
int main()
{
scanf("%d", &n);
for(int i = 0; i < n; ++i)
scanf("%d%d%d%d", &a[i], &b[i], &c[i], &d[i]);
solve();
return 0;
}