zoukankan      html  css  js  c++  java
  • HDU 1159 Common Subsequence(POJ 1458)

    Common Subsequence
    Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 34819 Accepted Submission(s): 15901


    Problem Description A subsequence of a given sequence is the given sequence with some elements (possible none) left out. Given a sequence X = <x1, x2, ..., xm> another sequence Z = <z1, z2, ..., zk> is a subsequence of X if there exists a strictly increasing sequence <i1, i2, ..., ik> of indices of X such that for all j = 1,2,...,k, xij = zj. For example, Z = <a, b, f, c> is a subsequence of X = <a, b, c, f, b, c> with index sequence <1, 2, 4, 6>. Given two sequences X and Y the problem is to find the length of the maximum-length common subsequence of X and Y. The program input is from a text file. Each data set in the file contains two strings representing the given sequences. The sequences are separated by any number of white spaces. The input data are correct. For each set of data the program prints on the standard output the length of the maximum-length common subsequence from the beginning of a separate line.
    Sample Input

    abcfbc abfcab
    programming contest
    abcd mnp


    Sample Output

    4
    2
    0


    Source Southeastern Europe 2003
    解析:最长公共子序列。
    ``` #include #include #include using namespace std;

    char s1[500], s2[500];
    int dp[500][500];

    int lcs()
    {
    int m = strlen(s1), n = strlen(s2);
    for(int i = 0; i <= m; ++i)
    dp[i][0] = 0;
    for(int i = 0; i <= n; ++i)
    dp[0][i] = 0;
    for(int i = 1; i <= m; ++i){
    for(int j = 1; j <= n; ++j){
    if(s1[i-1] == s2[j-1])
    dp[i][j] = dp[i-1][j-1]+1;
    else
    dp[i][j] = max(dp[i][j-1], dp[i-1][j]);
    }
    }
    return dp[m][n];
    }

    int main()
    {
    while(~scanf("%s%s", s1, s2)){
    int res = lcs();
    printf("%d ", res);
    }
    return 0;
    }

    
    <br>
    因为进行状态转移的时候,只与前一个状态有关,所以可以用[滚动数组](http://blog.csdn.net/insistgogo/article/details/8581215)进行优化来减少所需存储空间。
    

    include

    include

    include

    using namespace std;

    char s1[500], s2[500];
    int dp[2][500];

    int lcs()
    {
    int m = strlen(s1), n = strlen(s2);
    memset(dp, 0, sizeof dp);
    for(int i = 1; i <= m; ++i){
    for(int j = 1; j <= n; ++j){
    if(s1[i-1] == s2[j-1])
    dp[i%2][j] = dp[(i-1)%2][j-1]+1;
    else
    dp[i%2][j] = max(dp[i%2][j-1], dp[(i-1)%2][j]);
    }
    }
    return dp[m%2][n];
    }

    int main()
    {
    while(~scanf("%s%s", s1, s2)){
    int res = lcs();
    printf("%d ", res);
    }
    return 0;
    }

  • 相关阅读:
    (萌O(∩_∩)O)哈希知识点小结
    hash应用以及vector的使用简介:POJ 3349 Snowflake Snow Snowflakes
    BestCoder Round #3HDU 4907
    搜索:POJ2251&POJ1426&POJ3087&POJ2488
    母函数初学四大题
    欧拉函数知识点总结及代码模板及欧拉函数表
    欧几里德与扩展欧几里德算法以及青蛙的约会~
    KMP 知识点总结
    HDU 1142 A Walk Through the Forest(dijkstra+记忆化DFS)
    HDU 1535 Invitation Cards(SPFA,及其优化)
  • 原文地址:https://www.cnblogs.com/inmoonlight/p/6027131.html
Copyright © 2011-2022 走看看