zoukankan      html  css  js  c++  java
  • Integration Services学习(3):数据流任务(下)

    前一篇文章SSIS 学习(2):数据流任务(上),介绍了如何创建一个简单的ETL包,如何通过一个简单的数据流任务,将一个文本文件的数据导入到数据库中去。这些数据都保持了它原有的本色,一个字符不多,一个字符地少导入,但是在实际应用过程中,可能很少有这种情况,就拿IisLog文件来说吧,其中包含有:请求成功的记录(sc-Status=200),也有请求失败的记录;有网页(比如:*.aspx、*.htm、*.asp、*.php等)、有图片、有样式表文件(*.CSS)、有脚本文件(*.js)等,可谓是鲜花与毒草并存,精华与糟铂同居啊,我们如何根据不同的需求,把其中的鲜花与精华提炼出来呢,这就是我们今天要讲的重点:数据流转换

      在进行数据流转换之前,我们先介绍一下使用场景:以IISLOG为依据,进行网站点击率分析(IP & PV 分析),具体需求如下:

      (1)分析一段时间内,网站点击率的变化趋势。同时还需要知道各个周未、各个节假日网站的流量情况。

      (2)分析一天内,各时段(以小时为单位)网站的压力情况。

      (3)了解网站客户群分别来自哪些国家,哪些地区。

      为了实现这些需求,我们建立了如下的数据模型,请看:

       

    代码
    USE [IisLog]
    GO
    --建立事实表
    CREATE TABLE [dbo].[IISLog](
        
    [lngID] [bigint] NOT NULL,
        
    [lngShopID] [int] NULL,
        
    [lngDateID] [int] NULL,
        
    [lngTimeID] [int] NULL,
        
    [csDateTime] [datetime] NULL,
        
    [lngIpID] [int] NULL,
        
    [cIP] [varchar](30NULL,
        
    [csUriStem] [varchar](1000NULL,
        
    [csUriQuery] [varchar](1000NULL,
        
    [scStatus] [varchar](30NULL,
        
    [UserAgent] [varchar](255NULL,
        
    [lngReferer] [int] NULL,
        
    [csReferer] [varchar](1000NULL,
        
    [csRefererKPI] [varchar](1000NULL,
        
    [lngFlag] [int] NULL
    ON [PRIMARY]

    --IP库
    CREATE TABLE [dbo].[dimIP](
        
    [ID] [bigint] IDENTITY(1,1NOT NULL,
        
    [ipSegment] [nvarchar](20NULL,
        
    [strCountry] [varchar](20NULL,
        
    [strProvince] [varchar](20NULL,
        
    [strCity] [varchar](50NULL,
        
    [strMemo] [varchar](100NULL,
     
    CONSTRAINT [PK_ID] PRIMARY KEY CLUSTERED 
    (
        
    [ID] ASC
    )
    WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ONON [PRIMARY]
    ON [PRIMARY]

    --日期
    CREATE TABLE [dbo].[dimDate](
        
    [lngDateID] [int] NOT NULL,
        
    [lngYear] [int] NULL,
        
    [strMonth] [varchar](10NULL,
        
    [dtDateTime] [datetime] NULL,
        
    [strQuarter] [varchar](10NULL,
        
    [strDateAttr] [varchar](10NULL,
        
    [strMemo] [varchar](50NULL,
     
    CONSTRAINT [PK_dimDate] PRIMARY KEY CLUSTERED 
    (
        
    [lngDateID] ASC
    )
    WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ONON [PRIMARY]
    ON [PRIMARY]

    --时间
    CREATE TABLE [dbo].[dimTime](
        
    [lngTimeID] [int] NOT NULL,
        
    [lngHour] [int] NULL,
        
    [strHour] [varchar](10NULL,
        
    [strTimeAttr] [varchar](10NULL,
        
    [strMemo] [varchar](50NULL,
     
    CONSTRAINT [PK_dimTime] PRIMARY KEY CLUSTERED 
    (
        
    [lngTimeID] ASC
    )
    WITH (PAD_INDEX  = OFF, STATISTICS_NORECOMPUTE  = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS  = ON, ALLOW_PAGE_LOCKS  = ONON [PRIMARY]
    ON [PRIMARY]

     下面,我们就一步一步地介绍,如何进行数据流转换,以达到上面的需求。

      (一)、"条件性拆分(Conditional Split )"。相当于Sql 语句的Where 条件。这或许是所有数据流转换任务的第一步,为了减少后续处理的数据量,为了提高系统性能,先过滤掉不需要的记录。前面讲过,IisLog 文件包括有各式各样的记录,而对本例需求来说,为了准确计算IP、PV数据,我们将如何过滤呢?

      (1)、筛选出纯网页浏览记录。即*.aspx、*.htm(本网站只有这两种类型的网页文件)文件记录。

      (2)、筛选出请求成功的记录(sc-Status=200)。

      打开上一篇文件的SSIS Solution,切换到数据流Tab,从左边工具箱中,打开“数据流转换”,找到“条件性拆分(Conditional Split)”组件,拖到数据流面板上,然后将“平面文件源”组件下的绿色箭头拖到“条件性拆分”组件上,双击“条件性拆分”组件,打开“条件性拆分转换编辑器”,如图:

      在这个窗口,有系统变量、数据源列、系统函数这些资源可供使用。我们为了筛选出纯网页浏览记录,需要从列cs_uri_stem中找到以.aspx、.htm、“/” 结尾的页面链接。请分别在上图列表的“输出名称”栏位,输入“Form Records”,在条件表达式栏位输入:

    RIGHT(cs_uri_stem,5== ".aspx" || RIGHT(cs_uri_stem,4== ".htm" || RIGHT(cs_uri_stem,1== "/"

     然后筛选请求成功的记录,其表过式为:

    sc_status == "200"

     最后将两个表达式组合起来,即为:

    (RIGHT(cs_uri_stem,5== ".aspx" || RIGHT(cs_uri_stem,4== ".htm" || RIGHT(cs_uri_stem,1== "/"&& sc_status == "200"

     如图所示:

    点击确定.数据过滤就算大功告成了。

      (二)、派生列(Derived Column),相当于SQL语句中的计算列,即根据其它列,按照一定的计算公式,派生出一个新列。在此例中,有三种情况需要用到派生列:

      (1)日期列,从log文件导入的日期、时间,为两个独立的字符串(varchar),而数据库中的对应字段为Datetime 型,如果要想建立一种映射,则需要根据log 文件的Date 、time 字段,派生出一个Datetime 型的字段。

      (2)时间段,同理log 文件中的Time 为一字符串,需要取出其中的“小数(hour),才能与dimTime 中的lngHour 相匹配。

      (3)IP,我们想根据客户IP,确定他所在国家、省市、地区。要达到这一需求,我想并不需要IP完全匹配,只要IP的前三段匹配,就可以确定了(没有考证过,个人感觉而已,如不妥,请指正),所以需要派生出一个ipSegment =IP的前三段,以此映射他所在的地区。

      同理,从工具箱中,将“派生列”组件拖到“条件拆分”组件的下方,再将“条件拆分”组件下方的绿色箭头拖到“派生列”组件上,系统会弹出一窗口,要求选择条件拆分的的输出名称,如图:

      从下拉列表框中选择“Form Records”,点击确定。

      然后再双击“派生列”组件,打开“派生列转换编辑器”,如图:

      这个窗口太眼熟了吧,那不是前面讲的“条件性拆分编辑窗口”吗?是的,非常类似,我就不罗嗦了,按图上要求,输入派生列名称,选择派生类型,输入表达式,后面的数据类型、数据长度、精度等属性,将根据派生表达式自动生成,一般是不允许修改的。 

      (三)、数据类型转换。在Integration Services 中,数据类型匹配要求是相当严格的,尤其是后面要讲的查找(Lookup)组件,数据类型必须绝对匹配,才能Join ,否则将不成功。

      Integration Services 中的数据类型,它为了兼容多种数据源(比如平面文件、MssQL、ORACLE、DB2、MYSQL等),在形式上它不同于前面说的任何一种数据源的数据类型,一旦数据进入Integration Services 包中的数据流中时,数据流引擎就会将这些列的数据转换为Integration Services 的数据类型,前面介绍的“条件性拆分”、“派生列”中的表达式,都是对这种Integration Services类型的数据进行操作。所以如果后面要应用到查找(Lookup)组件,就必须要对这种数据类型进行转换,才可以与查找源(关系型数据库中的表或视图)的列匹配。具体操作为:

      从工具箱中,将“数据转换”组件拖到窗口上,将上一组件(派生列)组件下面的绿色箭头拖此组件上,双击打开“数据转换组件”,如图:

      勾选要进行数据类型转换的列:Date,strDatetime,将它们转换MSSQL的Datetime 类型。

      特别说明一下,Integration Services数据类型与其它关系型数据库的数据类型之间的关系是比较复杂,如果凭空猜想,很难找到它们之间的对应关系,请参考Microsoft 说明文档,那里面有非常详细的说明。Integration Services 数据类型

      (四)、查找(Lookup),类似于Sql 中的Left Join 、Right Join ,一般可以实现两方面的功能:(1)输出匹配的项;(2)、输出无匹配项,这个功能在ETL中应用是相当频泛的,如果善加利用,可以实现很多功能。前面两种数据流转换(派生列、数据类型转换)都是为Lookup 铺路搭桥的。在这个例子,有三个列需要查找,IP、Date、Time。只要一切准备工作就绪,Lookup 就容易多了。

      将“查找(Lookup)”组件拖到窗口中,连接上一组件的绿色箭头,双击打开“查找转换编辑器”,如图:

      这可比以前的编辑器,复杂一些了吧,其实也并没有那么可怕,如果一般用用,很多地方都按Default 设置,那也是很容易的。但是ETL的性能,在这一步是蛮关键的。首先看缓存模式:

      完全缓存:是指在查找转换前,先把引用数据集,完全缓存在内存中,供以后查找时用。

      部分缓存:在执行“查找转换”时生成引用数据集,并将有匹配的数据行加载到缓存中,没有匹配的数据行则丢弃。

      无缓存:在执行“查找转换”的过程中生成引用数据集,但不加载入缓存。

      通过上面的解释,利弊已经很明显了,不同的情况,可能需要不同的处理策略,自已权衡吧。

      连接类型,实际上也很清楚了,就不多说了。

      指定如何处理无匹配的行:这一选项非常重要,共有四个选项:

      忽略失败:就是说遇到无匹配的项,忽略,程序继续执行。

      将行定位到错误输出:无匹配的记录,通过错误数据流路径(红色箭头)输出,供以后人手分析处理。

      组件失败:如果遇到无匹配的项,组件立即失败,程序停止执行。

      将行定位到无匹配输出:输出无匹配的记录集。此选项通常用于查找是否有新的记录产生,如果有新记录出现,则导入,已有匹配的记录集忽略。本例中,IP查找将会用这一选项,如果遇到一个新IP,则插入到数据仓库中,否则,就则忽略此记录,不再重复插入了。

       选择“连接”,如图:

      选择连接管理器IisLog,在表或者视图拉列框中选择“dimDate“。

      切换到“列”,将[可用输入列]中的“dtDate”拖到[可用查找列]的“dtDatetime”,两个字段间w会连一条直线,表示相互建立连接关系,前面说过,如果这两列的数据类型不一致,这种关系将无法建立。最后在“可用查找列”中勾选“lngDateID”,作为输出。点击确定,lngDateID 的查找就完成了。

      其它两个,有兴趣的朋友可以自动手试试,看能否成功。

      这样,数据转换就算完成了,最后接着上课的数据流目标,将源列与目标映射起来,如图:

      点击“运行”,梦想中的绿色境界,就出现了。

     

       

    源码下载:IisLog 源码下载

      

  • 相关阅读:
    【kafka学习之五】kafka运维:kafka操作日志设置和主题删除
    【Redis学习之十一】Java客户端实现redis集群操作
    FastDFS:Java客户都实现文件的上传、下载、修改、删除
    DevOps之四:Git & GitLab
    代码静态检查Eclipse插件:SonarLint插件离线安装
    DevOps之三:CentOS7.3 安装部署Jenkins(三种方式) & Hudson
    DevOps之三:Maven私服Nexus使用 && 清理nexus历史镜像
    DevOps之三:搭建Maven私服Nexus
    DevOps之二:搭建SVN服务器(SvnAdmin)
    财务对账
  • 原文地址:https://www.cnblogs.com/invinboy/p/1628076.html
Copyright © 2011-2022 走看看