For example, given array S = {-1 2 1 -4}, and target = 1.
The sum that is closest to the target is 2. (-1 + 2 + 1 = 2).
想来想去想不到什么好的解决方法,只好用最原始的方法,把所有可能的组合列举一遍,选择最优的,O(n^3)。
可以在这个方法上做些优化。
class Solution: def fabs(self,a): if a<0: return -a else: return a def threeSumClosest(self, num, target): num_items=len(num) if num_items==3: return sum(num) num.sort() absdiff=self.fabs(target)+self.fabs(num[num_items-1])+self.fabs(num[num_items-2])+self.fabs(num[num_items-3]) output=absdiff for i in range(num_items-2): for j in range(i+1,num_items-1): sum2=num[i]+num[j] k=self.findClosest(num[j+1:num_items],target-sum2,num_items-j-1) if target==sum2+k: return sum2+k else: absd=self.fabs( target- (sum2+k) ) if absd<=absdiff: absdiff=absd output=sum2+k return int(output) def findClosest(self,num,target,num_items): #num is sorted if target>=num[num_items-1]: return num[num_items-1] if target<=num[0]: return num[0] head=0 end=num_items-1 mid=(head+end)//2 while (end-head)>1: if target>=num[mid]: head=mid mid=(head+end)//2 else: end=mid mid=(head+end)//2 if self.fabs(num[end]-target)-self.fabs(num[head]-target)>0: return num[head] else: return num[end] if __name__ == '__main__': s=Solution() n=[1,2,3,4,5,6] print(s.threeSumClosest(n,0)) print(s.threeSumClosest([1,1,1,1], -100))