zoukankan      html  css  js  c++  java
  • 算法系列1《DES》

         

    1. DES算法简介


         DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。

     

         DES 使用一个56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用16 个循环,使用异或置换代换移位操作四种基本运算。

     

        DES 的常见变体是三重 DES,使用168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容DES。

     

        攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用56 位的密钥,则可能的密钥数量是 2 的 56次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(AdvancedEncryption Standard,AES).

     

       该算法被允许用于安全报文传送MAC机制密文运算,算法的详细过程在ISO8731-1、ISO8732、ISO/IEC10116中定义。







    2. DES实现源码


    <<DES.h>>

    namespace Des
    {
    	enum
    	{
    		ECB = 0,
    		CBC = 1
    	};
    	enum
    	{
    		ENCRYPT = 0,
    		DECRYPT = 1
    	};
    
    	typedef BYTE (*PSUBKEY)[16][48];
    
    	void ByteToBit(const BYTE* pIn, BYTE byBits, BYTE* pOut);
    	void BitToByte(const BYTE* pIn, BYTE byBits, BYTE* pOut);
    	void LeftShift(BYTE* pIn, BYTE byInLen, BYTE byOffset);
        void Xor(const BYTE* pIn, BYTE byLen, BYTE* pInOut);
    	void Transform(const BYTE* pIn, const bool* pTable, BYTE len, bool* pOut);
    	void S_func(const BYTE in[48], BYTE out[32]);
    	void F_func(const BYTE ki[48], BYTE out[32]);
    
    	void SetSubKey(PSUBKEY pSubKey, const BYTE Key[8]);
    	void DoDes(int nMode, int nOperator, const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output, const BYTE* init_Vector= NULL);
    	BOOL DoDes(int nMode, int nOperator, string strText, string KEK, string &OutData,const BYTE* init_Vector = NULL);
    	void DoDesMac(string intText, string KEK, string &OutData, const BYTE* init_Vector = NULL);
    	void DoSSMac(string intText, string KEK, string &OutData,int _Length);
    	void DoGPMac(string intText, string KEK, string &OutData);
    	void RunDes(const BYTE In[8], int nType, BYTE* Key, BYTE Out[8]);
    	void DoDesMac(const BYTE* input, int nDataLen, const BYTE* key, int nKeyLen, BYTE* output, const BYTE* init_Vector = NULL);
    	void DoSSMac(const BYTE* input, int nDataLen, const BYTE* key, int nKeyLen, BYTE* output);
    	void DoGPMac(const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output);
    	string DesVerify(string Stxt);
    }
     

    <<DES.CPP>>

    namespace Des
    {
    	// initial permutation IP
    	const BYTE IP_Table[64] = {
    		58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
    			62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
    			57, 49, 41, 33, 25, 17,  9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
    			61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
    	};
    
    	// final permutation IP^-1 
    	const BYTE IPR_Table[64] = {
    		40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
    			38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
    			36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
    			34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41,  9, 49, 17, 57, 25
    	};
    
    	// expansion operation matrix
    	const BYTE E_Table[48] = {
    		32, 1,  2,  3,  4,  5,  4,  5,  6,  7,  8,  9,
    			8,  9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
    			16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
    			24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32,  1
    	};
    
    	// 32-bit permutation function P used on the output of the S-boxes 
    	const BYTE P_Table[32] = {
    		16, 7, 20, 21, 29, 12, 28, 17, 1,  15, 23, 26, 5,  18, 31, 10,
    			2,  8, 24, 14, 32, 27, 3,  9,  19, 13, 30, 6,  22, 11, 4,  25
    	};
    
    	// permuted choice table (key) 
    	const BYTE PC1_Table[56] = {
    		57, 49, 41, 33, 25, 17,  9,  1, 58, 50, 42, 34, 26, 18,
    			10,  2, 59, 51, 43, 35, 27, 19, 11,  3, 60, 52, 44, 36,
    			63, 55, 47, 39, 31, 23, 15,  7, 62, 54, 46, 38, 30, 22,
    			14,  6, 61, 53, 45, 37, 29, 21, 13,  5, 28, 20, 12,  4
    	};
    
    	// permuted choice key (table) 
    	const BYTE PC2_Table[48] = {
    		14, 17, 11, 24,  1,  5,  3, 28, 15,  6, 21, 10,
    			23, 19, 12,  4, 26,  8, 16,  7, 27, 20, 13,  2,
    			41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
    			44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
    	};
    
    	// number left rotations of pc1 
    	const BYTE LR_Table[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
    
    	// The (in)famous S-boxes 
    	const BYTE S_Box[8][4][16] = {
    		// S1 
    		14,	4,	13,	 1,  2, 15, 11,  8,  3, 10,  6, 12,  5,  9,  0,  7,
    			0, 15,  7,  4, 14,  2, 13,  1, 10,  6, 12, 11,  9,  5,  3,  8,
    			4,  1, 14,  8, 13,  6,  2, 11, 15, 12,  9,  7,  3, 10,  5,  0,
    			15, 12,  8,  2,  4,  9,  1,  7,  5, 11,  3, 14, 10,  0,  6, 13,
    			// S2 
    			15,  1,  8, 14,  6, 11,  3,  4,  9,  7,  2, 13, 12,  0,  5, 10,
    			3, 13,  4,  7, 15,  2,  8, 14, 12,  0,  1, 10,  6,  9, 11,  5,
    			0, 14,  7, 11, 10,  4, 13,  1,  5,  8, 12,  6,  9,  3,  2, 15,
    			13,  8, 10,  1,  3, 15,  4,  2, 11,  6,  7, 12,  0,  5, 14,  9,
    			// S3 
    			10,  0,  9, 14,  6,  3, 15,  5,  1, 13, 12,  7, 11,  4,  2,  8,
    			13,  7,  0,  9,  3,  4,  6, 10,  2,  8,  5, 14, 12, 11, 15,  1,
    			13,  6,  4,  9,  8, 15,  3,  0, 11,  1,  2, 12,  5, 10, 14,  7,
    			1, 10, 13,  0,  6,  9,  8,  7,  4, 15, 14,  3, 11,  5,  2, 12,
    			// S4 
    			7, 13, 14,  3,  0,  6,  9, 10,  1,  2,  8,  5, 11, 12,  4, 15,
    			13,  8, 11,  5,  6, 15,  0,  3,  4,  7,  2, 12,  1, 10, 14,  9,
    			10,  6,  9,  0, 12, 11,  7, 13, 15,  1,  3, 14,  5,  2,  8,  4,
    			3, 15,  0,  6, 10,  1, 13,  8,  9,  4,  5, 11, 12,  7,  2, 14,
    			// S5 
    			2, 12,  4,  1,  7, 10, 11,  6,  8,  5,  3, 15, 13,  0, 14,  9,
    			14, 11,  2, 12,  4,  7, 13,  1,  5,  0, 15, 10,  3,  9,  8,  6,
    			4,  2,  1, 11, 10, 13,  7,  8, 15,  9, 12,  5,  6,  3,  0, 14,
    			11,  8, 12,  7,  1, 14,  2, 13,  6, 15,  0,  9, 10,  4,  5,  3,
    			// S6 
    			12,  1, 10, 15,  9,  2,  6,  8,  0, 13,  3,  4, 14,  7,  5, 11,
    			10, 15,  4,  2,  7, 12,  9,  5,  6,  1, 13, 14,  0, 11,  3,  8,
    			9, 14, 15,  5,  2,  8, 12,  3,  7,  0,  4, 10,  1, 13, 11,  6,
    			4,  3,  2, 12,  9,  5, 15, 10, 11, 14,  1,  7,  6,  0,  8, 13,
    			// S7 
    			4, 11,  2, 14, 15,  0,  8, 13,  3, 12,  9,  7,  5, 10,  6,  1,
    			13, 0, 11,  7,  4,  9,  1, 10, 14,  3,  5, 12,  2, 15,  8,  6,
    			1,  4, 11, 13, 12,  3,  7, 14, 10, 15,  6,  8,  0,  5,  9,  2,
    			6, 11, 13,  8,  1,  4, 10,  7,  9,  5,  0, 15, 14,  2,  3, 12,
    			// S8 
    			13,  2,  8,  4,  6, 15, 11,  1, 10,  9,  3, 14,  5,  0, 12, 7,
    			1, 15, 13,  8, 10,  3,  7,  4, 12,  5,  6, 11,  0, 14,  9,  2,
    			7, 11,  4,  1,  9, 12, 14,  2,  0,  6, 10, 13, 15,  3,  5,  8,
    			2,  1, 14,  7,  4, 10,  8, 13, 15, 12,  9,  0,  3,  5,  6, 11
    	};
    
    	void ByteToBit(const BYTE* pIn, BYTE byBits, BYTE* pOut)
    	{
    		for (int i = 0; i < byBits;  ++ i)
    		{
    			pOut[i] = (pIn[i >> 3] >> (7 - i & 7)) & 1;
    		}
    	}
    
    	void BitToByte(const BYTE* pIn, BYTE byBits, BYTE* pOut)
    	{
    		memset(pOut, 0, byBits >> 3);
    		for (int i = 0; i < byBits;  ++ i)
    		{
    			pOut[i >> 3] |= (pIn[i] << (7 - i & 7));
    		}
    	}
    
    	void LeftShift(BYTE* pIn, BYTE byInLen, BYTE byOffset)
    	{
    		BYTE temp[256];
    		memcpy(temp, pIn, byOffset);
    		memcpy(pIn, pIn  +  byOffset, byInLen - byOffset);
    		memcpy(pIn  +  byInLen - byOffset, temp, byOffset);
    	}
    	
    	void Xor(const BYTE* pIn1, const BYTE* pIn2, BYTE byLen, BYTE* pInOut)
    	{
    		for (int i = 0; i < byLen;  ++ i)
    		{
    			pInOut[i] = pIn1[i] ^ pIn2[i];
    		}
    	}
    
    	void Transform(const BYTE* pIn, const BYTE* pTable, BYTE len, BYTE* pOut)
    	{
    		BYTE temp[64];
    
    		for (int i = 0; i < len;  ++ i)
    		{
    			temp[i] = pIn[pTable[i] - 1];
    		}
    		memcpy(pOut, temp, len);
    	}
    
    	void S_func(const BYTE in[48], BYTE out[32]) //4BIT 代替 6BIT
    	{
    		for (BYTE i = 0, j, k; i < 8;  ++ i, in  += 6, out  += 4) 
    		{
    			j = (in[0] << 1)  +  in[5];
    			k = (in[1] << 3)  +  (in[2] << 2)  +  (in[3] << 1)  +  in[4];	//组织SID下标
    
    			for (BYTE l = 0; l < 4;  ++ l)  //把相应4bit赋值
    			{
    				out[l] = (S_Box[i][j][k] >> (3 - l)) & 1;
    			}
    		}
    	}
    
    	void F_func(const BYTE ki[48], BYTE out[32])
    	{
    		BYTE MR[48];
    		Transform(out, E_Table, 48, MR);  //扩展置换E
    		Xor(ki, MR, 48, MR);
    		S_func(MR, out);
    		Transform(out, P_Table, 32, out);
    	}
    
    	void SetSubKey(PSUBKEY pSubKey, const BYTE Key[8])
    	{
    		BYTE K[64]; 
    		BYTE* KL = &K[0];
    		BYTE* KR = &K[28];
    		ByteToBit(Key, 64, K);
    		Transform(K, PC1_Table, 56, K);
    		for (int i = 0; i < 16;  ++ i) 
    		{
    			LeftShift(KL, 28, LR_Table[i]);
    			LeftShift(KR, 28, LR_Table[i]);
    			Transform(K, PC2_Table, 48, (*pSubKey)[i]);
    		}
    	}
    
    	void RunDes(const BYTE* In, int nOperator, const PSUBKEY pSubKey, BYTE* Out)
    	{
    		BYTE M[64];
    		BYTE temp[32];
    		BYTE* li = &M[0];
    		BYTE* ri = &M[32];
    		ByteToBit(In, 64, M);
    		Transform(M, IP_Table, 64, M); //
    		if (ENCRYPT == nOperator)
    		{
    			for (int i = 0; i < 16;  ++ i)
    			{
    				memcpy(temp, ri, 32);		//Ri[i-1] 保存
    				F_func((*pSubKey)[i], ri);	//Ri[i-1]经过转化和SBox输出为P盒
    				Xor(li, ri, 32, ri);		//Ri[i] = P XOR Li[i-1]
    				memcpy(li, temp, 32);		//Li[i] = Ri[i-1] 
    			}
    		}
    		else
    		{
    			for (int i = 15; i >= 0; --i) 
    			{
    				memcpy(temp, ri, 32);		//Ri[i-1] 保存
    				F_func((*pSubKey)[i], ri);	//Ri[i-1]经过转化和SBox输出为P
    				Xor(li, ri, 32, ri);		//Ri[i] = P XOR Li[i-1]
    				memcpy(li, temp, 32);		//Li[i] = Ri[i-1]
    			}
    		}
    		LeftShift(M, 64, 32);			    //Ri与Li换位重组M 
    		Transform(M, IPR_Table, 64, M);		//最后结果进行转化
    		BitToByte(M, 64, Out);				//组织成字符
    	}
    
    	void DoDes(int nMode, int nOperator, const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output, const BYTE* init_Vector)
    	{
    		BYTE bySubKey[3][16][48];		//秘钥
    		memset(bySubKey, 0x01, sizeof(bySubKey));
    
    		//构造并生成SubKeys
    		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
    		for (int i = 0; i < nKey; i++)
    		{
    			SetSubKey(&bySubKey[i], &key[i << 3]);
    		}
    
    		int j = nInLen >> 3;
    		if (nMode == ECB)	//ECB模式
    		{
    			if (1 == nKey)	//单Key
    			{
    				for (int i = 0; i < j; ++i, output += 8, input += 8)
    				{
    					RunDes(input, nOperator, &bySubKey[0], output);
    				}
    			}
    			else if (2 == nKey)	//3DES 2Key
    			{
    				for (int i = 0; i < j; ++i, output += 8, input += 8)
    				{
    					RunDes(input, nOperator, &bySubKey[0], output);
    					RunDes(output, !nOperator, &bySubKey[1], output);
    					RunDes(output, nOperator, &bySubKey[0], output);
    				}
    			}
    			else			//3DES 3Key
    			{
    				for (int i = 0; i < j; ++i, output += 8, input += 8)
    				{
    					RunDes(input, nOperator, &bySubKey[nOperator ? 2 : 0], output);
    					RunDes(output, !nOperator, &bySubKey[1], output);
    					RunDes(output, nOperator, &bySubKey[nOperator ? 0 : 2], output);
    				}
    			}
    		}
    		else  //CBC模式  如果init_Vector为NULL则设置初始向量为8字节的0
    		{
    			BYTE byVector[8];	 //扭转向量
    			BYTE byTemp[8];      //中间变量
    
    			memset(byVector, 0x00, sizeof(byVector));
    			memset(byTemp,   0x00, sizeof(byTemp));
    
    			if (init_Vector)
    			{
    				memcpy(byVector, init_Vector, 8);
    			}
    
    			if (nKey == 1)	//单Key
    			{
    				for (int i = 0; i < j; ++i, output += 8, input += 8)
    				{
    					if (ENCRYPT == nOperator)
    					{
    						Xor(input, byVector, 8, byTemp);         //将输入与扭转变量异或
    					}
    					else
    					{
    						memcpy(byTemp, input, 8);
    					}
    
    					RunDes(byTemp, nOperator, &bySubKey[0], output);
    
    					if (ENCRYPT == nOperator)
    					{
    						memcpy(byVector, output, 8);			//将输出设定为扭转变量
    					}
    					else
    					{
    						Xor(output, byVector, 8, output);       //将输出与扭转变量异或
    
    						memcpy(byVector, byTemp, 8);			//将输入设定为扭转变量
    					}
    				}
    			}
    			else if (nKey == 2)	//3DES CBC 2Key
    			{
    				for (int i = 0; i < j; ++i, output += 8, input += 8)
    				{
    					if (ENCRYPT == nOperator)
    					{
    						for (int j = 0; j < 8; ++j)		//将输入与扭转变量异或
    						{
    							byTemp[j] = input[j] ^ byVector[j];
    						}
    					}
    					else
    					{
    						memcpy(byTemp, input, 8);
    					}
    
    					RunDes(byTemp, nOperator, &bySubKey[0], output);
    					RunDes(output, !nOperator, &bySubKey[1], output);
    					RunDes(output, nOperator, &bySubKey[0], output);
    
    					if (ENCRYPT == nOperator)
    					{
    						memcpy(byVector, output, 8);			//将输出设定为扭转变量
    					}
    					else
    					{
    						for (int j = 0; j < 8; ++j)		//将输出与扭转变量异或
    						{
    							output[j] = output[j] ^ byVector[j];
    						}
    						memcpy(byVector, byTemp, 8);			//将输入设定为扭转变量
    					}
    				}
    			}
    			else			//3DES CBC 3Key
    			{
    				for (int i = 0; i < j; ++i, output += 8, input += 8)
    				{
    					if (ENCRYPT == nOperator)
    					{
    						for (int j = 0; j < 8; ++j)		//将输入与扭转变量异或
    						{
    							byTemp[j] =	input[j] ^ byVector[j];
    						}
    					}
    					else
    					{
    						memcpy(byTemp, input, 8);
    					}
    
    					RunDes(byTemp, nOperator, &bySubKey[nOperator ? 2 : 0], output);
    					RunDes(output, !nOperator, &bySubKey[1], output);
    					RunDes(output, nOperator, &bySubKey[nOperator ? 0 : 2], output);
    
    					if (ENCRYPT == nOperator)
    					{
    						memcpy(byVector, output, 8);			//将输出设定为扭转变量
    					}
    					else
    					{
    						for (int j = 0; j < 8; ++j)		        //将输出与扭转变量异或
    						{
    							output[j] = output[j] ^ byVector[j];
    						}
    						memcpy(byVector, byTemp, 8);			//将输入设定为扭转变量
    					}
    				}
    			}
    		}
    	}
    
    	BOOL DoDes(int nMode, int nOperator, string strText, string KEK, string &OutData,const BYTE* init_Vector)
    	{	
    		BYTE key[33]= {0};
    		BYTE input[512] = {0};
    		BYTE output[512] = {0};
    		int nInLen = strText.length()/2;
    		BYTE nKeyLen=(BYTE)KEK.length()/2;
    		strings::HexToAsc(strText, input);
    		strings::HexToAsc(KEK, key);
    		if(nInLen%8!=0 || nKeyLen%8!=0 || nInLen==0 || nKeyLen==0){
    			return false;
    		}
    
    		DoDes(nMode, nOperator, input, nInLen, key, nKeyLen, output, init_Vector);
    		strings::AscToHex(output, nInLen, OutData);
    		return true;
    	}
    
    	//ANSI X9.9 MAC    DES CBC
    	void DoDesMac(string intText, string KEK, string &OutData, const BYTE* init_Vector)
    	{
    		BYTE byVector[8];
    		BYTE byTemp[8];
    		BYTE byData[128];
    
    		BYTE Input[512]={0};
    		BYTE Key[512]={0};
    		int nInLen;
    		BYTE nKeyLen;
    		BYTE Output[512]={0};
    
    		BYTE *input=Input;
    		BYTE *key=Key;
    		BYTE *output=Output;
    
    		nInLen=(BYTE)intText.length()/2;
    		nKeyLen=(BYTE)KEK.length()/2;
    
    		strings::HexToAsc(intText, input);
    		strings::HexToAsc(KEK, key);
    
    		memset(byVector, 0x00, sizeof(byVector));
    		memset(byTemp,   0x00, sizeof(byTemp));
    		memset(byData,   0x00, sizeof(byData));
    
    		BYTE bySubKey[3][16][48];		//秘钥
    
    		memset(bySubKey, 0x01, sizeof(bySubKey));
    
    		//构造并生成SubKeys
    		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
    		for (int i = 0; i < nKey; i ++ )
    		{
    			SetSubKey(&bySubKey[i], &key[i << 3]);
    		}
    
    		int j = nInLen >> 3;
    
    		if (init_Vector != NULL)
    		{
    			memcpy(byVector, init_Vector, 8);
    		}
    
    		if (1 == nKey)	//单倍长Key(8字节)
    		{
    			for (int i = 0; i < j;  ++ i, input  += 8)
    			{
    				Xor(input, byVector, 8, byTemp);
    				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
    
    				memcpy(byVector, output, 8);			//将输出设定为扭转变量
    			}
    		}
    		else if (2 == nKey)	//双倍长Key(16字节)
    		{
    			for (int i = 0; i < j;  ++ i, input  += 8)
    			{
    				Xor(input, byVector, 8, byTemp);
    				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
    				RunDes(output, DECRYPT, &bySubKey[1], output);
    				RunDes(output, ENCRYPT, &bySubKey[0], output);
    
    				memcpy(byVector, output, 8);			//将输出设定为扭转变量
    			}
    		}
    		else  //三倍长Key(24字节)    尚未验证
    		{
    			for (int i = 0; i < j;  ++ i, input  += 8)
    			{
    				Xor(input, byVector, 8, byTemp);
    				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
    				RunDes(output, DECRYPT, &bySubKey[1], output);
    				RunDes(output, ENCRYPT, &bySubKey[2], output);
    
    				memcpy(byVector, output, 8);			//将输出设定为扭转变量
    			}
    		}
    
    		strings::AscToHex(Output, 8, OutData);
    	}
    
    	//该函数的计算结果与卫士通dll计算MAC的结果一样
    	//input中要有80 + 00.... input的前8字节作为初始向量
    	void DoSSMac(string intText, string KEK, string &OutData,int _Length)
    	{ 
     		int nInLen=(int)intText.length()/2;
     		int nKeyLen=(int)KEK.length()/2;
    		unsigned char *input = new unsigned char[nInLen];
    		unsigned char *key = new unsigned char[nKeyLen];
    
    		strings::HexToAsc((const unsigned char*)intText.c_str(), nInLen*2, input);
    		strings::HexToAsc((const unsigned char*)KEK.c_str(), nKeyLen*2, key);
    
    		BYTE byInitVec[8];   //初始向量
    	    BYTE byTemp[8];
    		BYTE output[8];
    		memset(byInitVec, 0x00, sizeof(byInitVec));
    		memset(byTemp,   0x00, sizeof(byTemp));
    		memset(output,   0x00, sizeof(output));
    
    		memcpy(byInitVec, input, 8);
    		BYTE bySubKey[3][16][48];		//秘钥
    		memset(bySubKey, 0x01, sizeof(bySubKey));
    
    		int i = 0;
    		int j = (nInLen >> 3);
    
    		//构造并生成SubKeys
    		BYTE nKey = (BYTE)((nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3));
    		for (i = 0; i < nKey; i ++ )
    		{
    			SetSubKey(&bySubKey[i], &key[i << 3]);
    		}
    
    		memcpy(output, input, 8);
    		if (1 == nKey)	//单倍长Key(8字节)
    		{
    			j--;
    			for (int i = 0; i < j;  ++ i)
    			{
    				Xor(input  +  8 * (i  +  1), output, 8, output);
    				RunDes(output, 0, &bySubKey[0], output);
    
    				//memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
    			}
    		}
    		else if (2 == nKey)	//双倍长Key(16字节)
    		{      
    			j -= 2;
    			for (i = 0; i < j;  ++ i)
    			{
    				Xor(input  +  8 * (i  +  1), output, 8, output);
    				RunDes(output, 0, &bySubKey[0], output);       //将输出设定为扭转变量	
    			}
    			Xor(input  +  8 * ( ++ i), output, 8, output);        //最后一块数据和上面加密结果异或
    			RunDes(output, 0, &bySubKey[0], output);
    			RunDes(output, 1, &bySubKey[1], output);
    			RunDes(output, 0, &bySubKey[0], output);
    		}
    		else  //三倍长Key(24字节)    尚未验证
    		{
    			//j -= 2;
    			for (i = 0, j = (nInLen >> 3) - 2; i < j;  ++ i, input  += 8)
    			{
    				Xor(input  +  8 * (i  +  1), output, 8, byTemp);
    				RunDes(byTemp, 0, &bySubKey[0], output);
    
    				memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
    			}
    			Xor(input  +  8 * i, output, 8, output);
    			RunDes(output, 2, &bySubKey[0], output);
    			RunDes(output, 1, &bySubKey[1], output);
    			RunDes(output, 0, &bySubKey[0], output);
    		}
    		strings::AscToHex(output, _Length , OutData);
    	}
    
    	//input中不要自己填补80 + 00....       初始向量固定为8字节的0
    	void DoGPMac(string intText, string KEK, string &OutData)
    	{
    		BYTE byInData[256];  //密钥,输入数据
    		BYTE byEnter[256];
    		BYTE byResult[256];  //算法模式,算法操作,输入,结果
    		int nInLen;
    		int nKeyLen;
    		BYTE Output[512]={0};
    		BYTE Input[512]={0};
    		BYTE Key[512]={0};
    		BYTE *input=Input;
    		BYTE *key=Key;
    		BYTE *output=Output;
    
    		nInLen=intText.length()/2;
    		nKeyLen=KEK.length()/2;
    
    		strings::HexToAsc(intText, input);
    		strings::HexToAsc(KEK, key);
    
    		memset(byInData, 0x00, sizeof(byInData));
    		memcpy(byInData, input, nInLen);
    		byInData[nInLen] = 0x80;
    		nInLen ++ ;
    		nInLen  += (8 - nInLen % 8);  //80  +  (nInLen % 8)个00
    
    		int j = 0;
    		memset(byResult, 0x00, sizeof(byResult));
    		for (int i = 0; i < nInLen / 8; i ++ )
    		{
    			memset(byEnter, 0x00, sizeof(byEnter));
    			for (j = 0; j < 8; j ++ )
    			{
    				byEnter[j  +  8] = byResult[j] ^ byInData[8 * i  +  j];  //byEnter的前8字节(全0)为初始向量)
    			}
    //			DoSSMac(byEnter, 16, key, nKeyLen, byResult);     //特别注意
    		}
    
    		memcpy(output, byResult, 8);
    		strings::AscToHex(Output,strlen((char*)Output) , OutData);
    	}
    
    
    
    	//ANSI X9.9 MAC
    	void DoDesMac(const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output, const BYTE* init_Vector)
    	{
    		BYTE byVector[8];
    		BYTE byTemp[8];
    		BYTE byData[128];
    
    		memset(byVector, 0x00, sizeof(byVector));
    		memset(byTemp,   0x00, sizeof(byTemp));
    		memset(byData,   0x00, sizeof(byData));
    
    		BYTE bySubKey[3][16][48];		//秘钥
    
    		memset(bySubKey, 0x01, sizeof(bySubKey));
    
    		//构造并生成SubKeys
    		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
    		for (int i = 0; i < nKey; i++)
    		{
    			SetSubKey(&bySubKey[i], &key[i << 3]);
    		}
    
    		int j = nInLen >> 3;
    
    		if (init_Vector != NULL)
    		{
    			memcpy(byVector, init_Vector, 8);
    		}
    
    		if (1 == nKey)	//单倍长Key(8字节)
    		{
    			for (int i = 0; i < j; ++i, input += 8)
    			{
    				Xor(input, byVector, 8, byTemp);
    				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
    
    				memcpy(byVector, output, 8);			//将输出设定为扭转变量
    			}
    		}
    		else if (2 == nKey)	//双倍长Key(16字节)
    		{
    			for (int i = 0; i < j; ++i, input += 8)
    			{
    				Xor(input, byVector, 8, byTemp);
    				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
    				RunDes(output, DECRYPT, &bySubKey[1], output);
    				RunDes(output, ENCRYPT, &bySubKey[0], output);
    
    				memcpy(byVector, output, 8);			//将输出设定为扭转变量
    			}
    		}
    		else  //三倍长Key(24字节)    尚未验证
    		{
    			for (int i = 0; i < j; ++i, input += 8)
    			{
    				Xor(input, byVector, 8, byTemp);
    				RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
    				RunDes(output, DECRYPT, &bySubKey[1], output);
    				RunDes(output, ENCRYPT, &bySubKey[2], output);
    
    				memcpy(byVector, output, 8);			//将输出设定为扭转变量
    			}
    		}
    	}
    
    	//input中要有80+00.... input的前8字节作为初始向量
    	void DoSSMac(const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output)
    	{
    		BYTE byInitVec[8];   //初始向量
    		BYTE byTemp[8];
    
    		memset(byInitVec, 0x00, sizeof(byInitVec));
    		memset(byTemp,   0x00, sizeof(byTemp));
    
    		memcpy(byInitVec, input, 8);
    
    		BYTE bySubKey[3][16][48];		//秘钥
    
    		memset(bySubKey, 0x01, sizeof(bySubKey));
    
    		int i = 0;
    		int j = (nInLen >> 3);
    
    		//构造并生成SubKeys
    		BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
    		for (i = 0; i < nKey; i++)
    		{
    			SetSubKey(&bySubKey[i], &key[i << 3]);
    		}
    
    		memcpy(output, input, 8);
    		if (1 == nKey)	//单倍长Key(8字节)
    		{
    			j--;
    			for (int i = 0; i < j; ++i)
    			{
    				Xor(input + 8 * (i + 1), output, 8, output);
    				RunDes(output, 0, &bySubKey[0], output);
    
    				//memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
    			}
    		}
    		else if (2 == nKey)	//双倍长Key(16字节)
    		{      
    			j -= 2;
    			for (i = 0; i < j; ++i)
    			{
    				Xor(input + 8 * (i + 1), output, 8, output);
    				RunDes(output, 0, &bySubKey[0], output);       //将输出设定为扭转变量	
    			}
    			Xor(input + 8 * (++i), output, 8, output);        //最后一块数据和上面加密结果异或
    			RunDes(output, 0, &bySubKey[0], output);
    			RunDes(output, 1, &bySubKey[1], output);
    			RunDes(output, 0, &bySubKey[0], output);
    		}
    		else  //三倍长Key(24字节)    尚未验证
    		{
    			//j -= 2;
    			for (i = 0, j = (nInLen >> 3) - 2; i < j; ++i, input += 8)
    			{
    				Xor(input + 8 * (i + 1), output, 8, byTemp);
    				RunDes(byTemp, 0, &bySubKey[0], output);
    
    				memcpy(byInitVec, output, 8);			//将输出设定为扭转变量
    			}
    			Xor(input + 8 * i, output, 8, output);
    			RunDes(output, 2, &bySubKey[0], output);
    			RunDes(output, 1, &bySubKey[1], output);
    			RunDes(output, 0, &bySubKey[0], output);
    		}
    	}
    
    	//input中不要自己填补80+00....       初始向量固定为8字节的0
    	void DoGPMac(const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output)
    	{
    		BYTE byInData[256];  //密钥,输入数据
    		BYTE byEnter[256];
    		BYTE byResult[256];  //算法模式,算法操作,输入,结果
    
    		memset(byInData, 0x00, sizeof(byInData));
    		memcpy(byInData, input, nInLen);
    		byInData[nInLen] = 0x80;
    		nInLen++;
    		nInLen += (8 - nInLen % 8);  //80 + (nInLen % 8)个00
    
    		int j = 0;
    		memset(byResult, 0x00, sizeof(byResult));
    		for (int i = 0; i < nInLen / 8; i++)
    		{
    			memset(byEnter, 0x00, sizeof(byEnter));
    			for (j = 0; j < 8; j++)
    			{
    				byEnter[j + 8] = byResult[j] ^ byInData[8 * i + j];  //byEnter的前8字节(全0)为初始向量)
    			}
    					DoSSMac(byEnter, 16, key, (BYTE)nKeyLen, byResult);     //特别注意
    		}
    		
    		memcpy(output, byResult, 8);
    	}
    
    	string DesVerify(string Stxt)
    	{
    		string OutPut;
    		DoDes(ECB, ENCRYPT, "0000000000000000", Stxt, OutPut);
    		return OutPut.substr(0, 6);
    	}
    }
    


    3. DES加解密工具


         Des工具可以实现Des,3Des,Mac,Disp(离散)等功能,支持批量Des计算(需选择File)。对数据不足8的倍数字节实现自动补齐。DES工具下载地址:http://download.csdn.net/detail/yxstars/7728833,软件界面如下:





       


    文/yanxin8原创,获取更多信息请移步至yanxin8.com...



    Meet so Meet. C plusplus I-PLUS....
  • 相关阅读:
    UVa11218 KTV
    counting sort 计数排序
    Uva10474
    Uva110 Meta-Loopless Sorts
    Uva592 Island of Logic
    Qtwebkit flashplayer插件问题
    C++程序员的javascript教程
    Binary Search
    排列组合生成算法
    【Linux】mkdir命令
  • 原文地址:https://www.cnblogs.com/iplus/p/4467127.html
Copyright © 2011-2022 走看看