一、概论
作为Hadoop程序员,他要做的事情就是:
1、定义Mapper,处理输入的Key-Value对,输出中间结果。
2、定义Reducer,可选,对中间结果进行规约,输出最终结果。
3、定义InputFormat 和OutputFormat,可选,InputFormat将每行输入文件的内容转换为Java类供Mapper函数使用,不定义时默认为String。
4、定义main函数,在里面定义一个Job并运行它。
然后的事情就交给系统了。
1.基本概念:Hadoop的HDFS实现了google的GFS文件系统,NameNode作为文件系统的负责调度运行在master,DataNode运行在每个机器上。同时Hadoop实现了Google的MapReduce,JobTracker作为MapReduce的总调度运行在master,TaskTracker则运行在每个机器上执行Task。
2.main()函数,创建JobConf,定义Mapper,Reducer,Input/OutputFormat 和输入输出文件目录,最后把Job提交給JobTracker,等待Job结束。
3.JobTracker,创建一个InputFormat的实例,调用它的getSplits()方法,把输入目录的文件拆分成FileSplist作为Mapper task 的输入,生成Mapper task加入Queue。
4.TaskTracker 向 JobTracker索求下一个Map/Reduce。
Mapper Task先从InputFormat创建RecordReader,循环读入FileSplits的内容生成Key与Value,传给Mapper函数,处理完后中间结果写成SequenceFile.
Reducer Task 从运行Mapper的TaskTracker的Jetty上使用http协议获取所需的中间内容(33%),Sort/Merge后(66%),执行Reducer函数,最后按照OutputFormat写入结果目录。
TaskTracker 每10秒向JobTracker报告一次运行情况,每完成一个Task10秒后,就会向JobTracker索求下一个Task。
Nutch项目的全部数据处理都构建在Hadoop之上,详见Scalable Computing with Hadoop。
二、程序员编写的代码
(可以查看hadoop-examples-0.20.203.0.jar,里面也有一个类grep)
我们做一个简单的分布式的Grep,简单对输入文件进行逐行的正则匹配,如果符合就将该行打印到输出文件。因为是简单的全部输出,所以我们只要写Mapper函数,不用写Reducer函数,也不用定义Input/Output Format。
package demo.hadoop public class HadoopGrep { public static class RegMapper extends MapReduceBase implements Mapper { private Pattern pattern; public void configure(JobConf job) { pattern = Pattern.compile(job.get( " mapred.mapper.regex " )); } public void map(WritableComparable key, Writable value, OutputCollector output, Reporter reporter) throws IOException { String text = ((Text) value).toString(); Matcher matcher = pattern.matcher(text); if (matcher.find()) { output.collect(key, value); } } } private HadoopGrep () { } // singleton public static void main(String[] args) throws Exception { JobConf grepJob = new JobConf(HadoopGrep. class ); grepJob.setJobName( " grep-search " ); grepJob.set( " mapred.mapper.regex " , args[ 2 ]); grepJob.setInputPath( new Path(args[ 0 ])); grepJob.setOutputPath( new Path(args[ 1 ])); grepJob.setMapperClass(RegMapper. class ); grepJob.setReducerClass(IdentityReducer. class ); JobClient.runJob(grepJob); } }
RegMapper类的configure()函数接受由main函数传入的查找字符串,map() 函数进行正则匹配,key是行数,value是文件行的内容,符合的文件行放入中间结果。
main()函数定义由命令行参数传入的输入输出目录和匹配字符串,Mapper函数为RegMapper类,Reduce函数是什么都不做,直接把中间结果输出到最终结果的的IdentityReducer类,运行Job。
整个代码非常简单,丝毫没有分布式编程的任何细节。
三.运行Hadoop程序
Hadoop这方面的文档写得不全面,综合参考GettingStartedWithHadoop 与Nutch Hadoop Tutorial 两篇后,再碰了很多钉子才终于完整的跑起来了,记录如下:
3.1 local运行模式
完全不进行任何分布式计算,不动用任何namenode,datanode的做法,适合一开始做调试代码。
解压hadoop,其中conf目录是配置目录,hadoop的配置文件在hadoop-default.xml,如果要修改配置,不是直接修改该文件,而是修改hadoop-site.xml,将该属性在hadoop-site.xml里重新赋值。
hadoop-default.xml的默认配置已经是local运行,不用任何修改,配置目录里唯一必须修改的是hadoop-env.sh 里JAVA_HOME的位置。
将编译好的HadoopGrep与RegMapper.class 放入hadoop/build/classes/demo/hadoop/目录
或者编译成jar包HadoopGrep.jar放入hadoop/build/classes/demo/hadoop/目录
找一个比较大的xx.log文件放,然后运行
(jar包运行:bin/hadoop jar HadoopGrep.jar HadoopGrep input /tmp/output "[a-b]" )
说明:
input 为xx.log文件所在目录
/tmp/output为输出目录
"[a-b]" grep的字符串
查看输出目录的结果,查看hadoop/logs/里的运行日志。
在重新运行前,先删掉输出目录。
3.2 集群运行模式
(查看集群配置:http://blog.csdn.net/hguisu/article/details/7237395)
1 )执行bin/hadoop dfs 可以看到它所支持的文件操作指令。
2) 创建目录输入inpu:
$ bin/hadoop dfs -mkdir input
3)上传文件xx.log到指定目录 input :
$ bin/hadoop dfs -put xx.log input
(jar包运行:bin/hadoop jar HadoopGrep.jar HadoopGrep input /tmp/output "[a-b]" )
5 ) 查看输出文件:
$ bin/hadoop fs -get output output
$ cat output/*
或者
在分布式文件系统上查看输出文件:
$ bin/hadoop fs -cat output/*
7.运行hadoop/bin/stop-all.sh 结束。
四、效率
经测试,Hadoop并不是万用灵丹,很取决于文件的大小和数量,处理的复杂度以及群集机器的数量,相连的带宽,当以上四者并不大时,hadoop优势并不明显。
比如,不用hadoop用java写的简单grep函数处理100M的log文件只要4秒,用了hadoop local的方式运行是14秒,用了hadoop单机集群的方式是30秒,用双机集群10M网口的话更慢,慢到不好意思说出来的地步。