zoukankan      html  css  js  c++  java
  • Randomized QuickSelect

    In this blog, we give a solution for Quick Select.

    Here, we have an improvement. The idea is to randomly pick a pivot element.

    Main difference is how we implement partition.

    Java Random

    public int nextInt(int bound)

    Returns a pseudorandom, uniformly distributed int value between 0 (inclusive) and the specified value (exclusive).
    int idx = new Random().nextInt(nums.length);
    int random = (nums[idx]);

    Codes

     1 public class Solution {
     2     private int partition(int[] nums, int start, int end) {
     3         int pivot = nums[end];
     4         int currentSmaller = start - 1;
     5         for (int i = start; i < end; i++) {
     6             if (nums[i] < pivot) {
     7                 currentSmaller++;
     8                 swap(nums, i, currentSmaller);
     9             }
    10         }
    11         currentSmaller++;
    12         swap(nums, end, currentSmaller);
    13         return currentSmaller;
    14     }
    15 
    16     public int randomPartition(int[] nums, int start, int end) {
    17         int length = end - start + 1;
    18         int idx = new Random().nextInt(length);
    19         int randomIndex = idx + start;
    20         swap(nums, last, randomIndex);
    21         partition(nums, start, end);
    22     }
    23 }

    The assumption in the analysis is, random number generator is equally likely to generate any number in the input range.

    The worst case time complexity of the above solution is still O(n2). In worst case, the randomized function may always pick a corner element. The expected time complexity of above randomized QuickSelect is Θ(n), see CLRS book or MIT video lecture for proof. 

  • 相关阅读:
    kill命令
    linux grep命令
    ps命令详解
    Linux chmod命令详解
    Linux netstat命令详解
    多线程同步机制的几种方法
    C++_运算符重载 总结
    malloc/free与new/delete的区别
    python发送邮件
    linux之nfs
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4865572.html
Copyright © 2011-2022 走看看