zoukankan      html  css  js  c++  java
  • Largest Rectangle in Histogram 解答

    Question

    Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.

    histogram

    Above is a histogram where width of each bar is 1, given height =[2,1,5,6,2,3].

    histogram

    The largest rectangle is shown in the shaded area, which has area = 10unit.

    Example

    Given height = [2,1,5,6,2,3],
    return 10.

    Solution 1 -- Naive

    For each start point i

      For each end point j

        minHeight = min height between i and j

        result = max{result, (j - i + 1) * minHeight}

    Time Complexity O(n2)

     1 public class Solution {
     2     /**
     3      * @param height: A list of integer
     4      * @return: The area of largest rectangle in the histogram
     5      */
     6     public int largestRectangleArea(int[] height) {
     7         // write your code here
     8         if (height == null || height.length < 1)
     9             return 0;
    10         int start, end, minHeight, result = Integer.MIN_VALUE;
    11         for (start = 0; start < height.length; start++) {
    12             minHeight = height[start];
    13             for (end = start; end < height.length; end++) {
    14                 minHeight = Math.min(minHeight, height[end]);
    15                 result = Math.max(result, (end - start + 1) * minHeight);
    16             }
    17         }
    18         return result;
    19     }
    20 }

    Solution 2 -- Increasing Stack

    根据木桶原理,面积由最矮的高度决定。我们把问题转换为

    For 决定矩阵高度的那根最矮木头 i

      看 i 往左最远能延伸到什么地方 indexLeft

      看 i 往右最远能延伸到什么地方 indexRight

      best = max{best, height[i] * (indexRight - indexLeft + 1)}

    所以我们要找:

    往左走第一个比height[i]小的数

    往右走第一个比height[i]小的数

    这种题典型的用递增/递减栈实现。

     1 public class Solution {
     2     /**
     3      * @param height: A list of integer
     4      * @return: The area of largest rectangle in the histogram
     5      */
     6     public int largestRectangleArea(int[] height) {
     7         // write your code here
     8         if (height == null || height.length < 1)
     9             return 0;
    10         int result = 0;
    11         Stack<Integer> increasingStack = new Stack<Integer>();
    12         // Attention here i <= length
    13         for (int i = 0; i <= height.length; i++) {
    14             int currentValue = ((i == height.length) ? -1 : height[i]);
    15             while (!increasingStack.isEmpty() && height[increasingStack.peek()] >= currentValue) {
    16                 int currentHeight = height[increasingStack.pop()];
    17                 int left = increasingStack.size() > 0 ? increasingStack.peek() : -1;
    18                 int right = i;
    19                 result = Math.max(result, (right - left - 1) * currentHeight);
    20             }
    21             increasingStack.push(i);
    22         }
    23         return result; 
    24     }
    25 }

    注意,这里除了要计算以每个pop出来的元素为高的最大面积,还要计算每个未被pop出来的元素为高的最大面积。因此技巧在于最后多加一个元素-1,由于输入元素均大于等于0,所以当-1要push入栈时,栈里所有的元素都会被pop出来。

    还要注意,当前值等于栈顶值时也要做出栈操作。

    每个元素只入栈/出栈一次,因此时间复杂度是O(1)

  • 相关阅读:
    [转]多线程更新Processbar
    不能因技术后天的死 而迷茫了今天的“学” 生
    NSIS 安装包制作相关
    [转]yslow 评分标准
    c# winform 打印 窗体 及 窗体控件内容 的 初级尝试
    严重认知自身成长 与诸博友共勉
    [转]NSIS 的 Modern UI 教程
    爱的幸福
    遍历WinForm窗体 根据语言类型设置其控件Text显示
    多借鉴 多思考
  • 原文地址:https://www.cnblogs.com/ireneyanglan/p/4908175.html
Copyright © 2011-2022 走看看