zoukankan      html  css  js  c++  java
  • Lintcode 89 K sum

    K Sum

    题目描述

    给定一个输入数组 array(每个数不同),还有两个整数 k 和 target,在数组 array 中找出 k 个元素,使得这 k 个元素相加等于 target,问有多少种组合方式,输出组合方式的个数。

    注:在一种组合方式中,一个元素不能够被重复选择

    这里就说明了要用01背包的思路,内层从大到小循环

    题目分析

    我们之前讲过 Two Sum,也提到过 3 Sum,还有 4 Sum,那这道题是否可以套用之前的解法呢?

    这里有一个细节不知道你是否发现,就是 这道题目仅仅是让你输出所有组合方式的个数,并没有让你输出所有的组合方式,这是决定是否使用动态规划很重要的一点。

    如果没有这个 k,我相信你会很直接地想到使用 01 背包问题 的解法,那我们可以思考一下,基于原来的解法,如果增加了 k 这个限制,我们需要额外做些什么事情呢?

    因为 k 会决定问题的状态,因此我们的状态数组中也要考虑 k,在考虑将第 k 个元素放入背包中,我们需要看的是背包中存放 k – 1 个元素的情况,这么看来,其实相比普通的 01 背包问题,这道题目仅仅是增加了一维状态,没有其他的变化。

    参考代码

    public int kSum(int[] array, int k, int target) {
        int[][] dp = new int[target + 1][k + 1];
    
        dp[0][0] = 1;
    
        for (int i = 0; i < array.length; ++i) {
            for (int j = target; j >= array[i]; --j) {
                // 和普通 01背包问题 相比,仅仅是多了一层状态需要考虑
                // 这层状态记录的是背包里面元素的个数
                // 我们放入第 r 个元素的时候,必须确保背包里面已经有 r - 1 个元素
                for (int r = 1; r <= k; ++r) {
                    dp[j][r] += dp[j - array[i]][r - 1];
                }
            }
        }
    
        return dp[target][k];
    }
    

    for (int r = 1; r <= k; ++r) {
                    dp[j][r] += dp[j - array[i]][r - 1];
    

    这一部分代码的理解
    可以把dp的每一行的和当成原来普通背包问题更新的那个数













    种一棵树最好的时间是十年前,其次是现在。
  • 相关阅读:
    python模板引擎Cheetah的安装
    cocos2d 动作
    【leetcode】合并两个有序数组
    【leetcode】合并二叉树
    【leetcode】合并两个有序链表
    【leetcode】链表的中间结点
    【leetcode】使用最小花费爬楼梯
    【leetcode】栈的最小值
    【leetcode】最小绝对差
    【leetcode】玩筹码
  • 原文地址:https://www.cnblogs.com/islch/p/12602314.html
Copyright © 2011-2022 走看看