zoukankan      html  css  js  c++  java
  • 【E ECJTU_ACM 11级队员2012年暑假训练赛(2)】

    E - E
    Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

    Description

    Every time it rains on Farmer John's fields, a pond forms over Bessie's favorite clover patch. This means that the clover is covered by water for awhile and takes quite a long time to regrow. Thus, Farmer John has built a set of drainage ditches so that Bessie's clover patch is never covered in water. Instead, the water is drained to a nearby stream. Being an ace engineer, Farmer John has also installed regulators at the beginning of each ditch, so he can control at what rate water flows into that ditch. 
    Farmer John knows not only how many gallons of water each ditch can transport per minute but also the exact layout of the ditches, which feed out of the pond and into each other and stream in a potentially complex network. 
    Given all this information, determine the maximum rate at which water can be transported out of the pond and into the stream. For any given ditch, water flows in only one direction, but there might be a way that water can flow in a circle. 

    Input

    The input includes several cases. For each case, the first line contains two space-separated integers, N (0 <= N <= 200) and M (2 <= M <= 200). N is the number of ditches that Farmer John has dug. M is the number of intersections points for those ditches. Intersection 1 is the pond. Intersection point M is the stream. Each of the following N lines contains three integers, Si, Ei, and Ci. Si and Ei (1 <= Si, Ei <= M) designate the intersections between which this ditch flows. Water will flow through this ditch from Si to Ei. Ci (0 <= Ci <= 10,000,000) is the maximum rate at which water will flow through the ditch.

    Output

    For each case, output a single integer, the maximum rate at which water may emptied from the pond.

    Sample Input

    5 4
    1 2 40
    1 4 20
    2 4 20
    2 3 30
    3 4 10
    

    Sample Output

    50

      1 // Project name : E
      2 // File name    : main.cpp
      3 // Author       : Izumu
      4 // Date & Time  : Tue Jul 10 15:13:33 2012
      5 
      6 #include <iostream>
      7 #include <vector>
      8 #include <algorithm>
      9 #include <string>
     10 #include <queue>
     11 #include <stack>
     12 #include <cstring>
     13 #include <cstdio>
     14 #include <iomanip>
     15 using namespace std;
     16 const int inf=0x3f3f3f3f;
     17 const int maxn=222;
     18 int c[maxn][maxn];
     19 int f[maxn][maxn];
     20 bool you[maxn][maxn];
     21 int cen[maxn];
     22 int n,m;
     23 int tx,ty,tc;
     24 vector<int>g[maxn];
     25 queue<int>q;
     26 bool bfs()
     27 {
     28     memset(cen,-1,sizeof(cen));
     29     while (!q.empty()) q.pop();
     30     q.push(1);
     31     cen[1]=0;   
     32     int now;
     33     while(!q.empty()) 
     34     {
     35         now=q.front();
     36         q.pop();
     37         for(int i=0;i<g[now].size();i++)
     38         {
     39             if(you[now][g[now][i]] && cen[g[now][i]] == -1)
     40             {   
     41                 cen[g[now][i]]= cen[now] + 1;
     42                 q.push(g[now][i]);
     43             }
     44         }    
     45     }  
     46     return cen[n]!=-1; 
     47 }
     48 int dfs(int flow=inf,int now=1)
     49 {
     50     if(cen[now] == cen[n] )
     51     {       
     52         if(now == n)
     53         {
     54             return flow;
     55         }
     56         else
     57         {   
     58             return 0;
     59         }
     60     }
     61     int temp,sum;
     62     sum = 0;
     63     for(int i=0;i<g[now].size();i++)
     64     {
     65         if(cen[g[now][i]] - cen[now]  !=1 || !you[now][g[now][i]] || cen[g[now][i]] > cen[n] )
     66         {
     67             continue;
     68         }
     69         temp = dfs (min(c[now][g[now][i]] - f[now][g[now][i]] , flow) , g[now][i]);        
     70         f[now][g[now][i]] += temp;
     71         f[g[now][i]][now] -= temp;
     72         if(f[now][g[now][i]] == c[now][g[now][i]]) 
     73         {
     74             you[now][g[now][i]] = false;
     75         }            
     76         you[g[now][i]][now] = true;
     77         sum += temp;
     78         flow -= temp;
     79     }            
     80     return sum;
     81 }
     82 
     83 int dinic()
     84 {
     85     int ans=0;
     86     while( bfs() )
     87     {
     88         ans+=dfs();    
     89     }      
     90     return ans;
     91 }
     92 
     93 int main()
     94 {
     95     while(cin>>m>>n)
     96     {                           
     97         memset(c,0,sizeof(c));
     98         memset(f,0,sizeof(f));
     99         memset(you,false,sizeof(you));
    100         for(int i=1;i<=n;i++)
    101         {   
    102             g[i].clear();
    103         }
    104         for(int i=1;i<=m;i++)
    105         {
    106             cin>>tx>>ty>>tc;
    107             c[tx][ty]+=tc;
    108             you[tx][ty]=true;
    109             g[tx].push_back(ty);
    110             g[ty].push_back(tx);
    111         }
    112         cout<<dinic()<<endl;       
    113     }   
    114     return 0; 
    115 }
    116 
    117 // end 
    118 // ism 
  • 相关阅读:
    事务与锁的一些总结
    NYOJ 73
    NYOJ 456
    Sleep函数
    NYOJ 488(素数环)
    NYOJ 308
    NYOJ 27
    NYOJ 325
    NYOJ 138
    求两个或N个数的最大公约数(gcd)和最小公倍数(lcm)的较优算法
  • 原文地址:https://www.cnblogs.com/ismdeep/p/2584780.html
Copyright © 2011-2022 走看看