zoukankan      html  css  js  c++  java
  • Spark DataFrame列的合并与拆分

    版本说明:Spark-2.3.0

    使用Spark SQL在对数据进行处理的过程中,可能会遇到对一列数据拆分为多列,或者把多列数据合并为一列。这里记录一下目前想到的对DataFrame列数据进行合并和拆分的几种方法。

    1 DataFrame列数据的合并
    例如:我们有如下数据,想要将三列数据合并为一列,并以“,”分割

    +----+---+-----------+
    |name|age|      phone|
    +----+---+-----------+
    |Ming| 20|15552211521|
    |hong| 19|13287994007|
    | zhi| 21|15552211523|
    +----+---+-----------+

    1.1 使用map方法重写

    使用map方法重写就是将DataFrame使用map取值之后,然后使用toSeq方法转成Seq格式,最后使用Seq的foldLeft方法拼接数据,并返回,如下所示:

    //方法1:利用map重写
        val separator = ","
        df.map(_.toSeq.foldLeft("")(_ + separator + _).substring(1)).show()
    
        /**
          * +-------------------+
          * |              value|
          * +-------------------+
          * |Ming,20,15552211521|
          * |hong,19,13287994007|
          * | zhi,21,15552211523|
          * +-------------------+
          */

    1.2 使用内置函数concat_ws

    合并多列数据也可以使用SparkSQL的内置函数concat_ws()

    //方法2: 使用内置函数 concat_ws
        import org.apache.spark.sql.functions._
        df.select(concat_ws(separator, $"name", $"age", $"phone").cast(StringType).as("value")).show()
    
        /**
          * +-------------------+
          * |              value|
          * +-------------------+
          * |Ming,20,15552211521|
          * |hong,19,13287994007|
          * | zhi,21,15552211523|
          * +-------------------+
          */

    1.3 使用自定义UDF函数

    自己编写UDF函数,实现多列合并

     //方法3:使用自定义UDF函数
    
        // 编写udf函数
        def mergeCols(row: Row): String = {
          row.toSeq.foldLeft("")(_ + separator + _).substring(1)
        }
    
        val mergeColsUDF = udf(mergeCols _)
        df.select(mergeColsUDF(struct($"name", $"age", $"phone")).as("value")).show()

    完整代码:

    import org.apache.spark.sql.{Row, SparkSession}
    import org.apache.spark.sql.types.StringType
    
    /**
      * Created by shirukai on 2018/9/12
      * DataFrame 合并列
      */
    object MergeColsTest {
      def main(args: Array[String]): Unit = {
        val spark = SparkSession
          .builder()
          .appName(this.getClass.getSimpleName)
          .master("local")
          .getOrCreate()
    
        //从内存创建一组DataFrame数据
        import spark.implicits._
        val df = Seq(("Ming", 20, 15552211521L), ("hong", 19, 13287994007L), ("zhi", 21, 15552211523L))
          .toDF("name", "age", "phone")
        df.show()
        /**
          * +----+---+-----------+
          * |name|age|      phone|
          * +----+---+-----------+
          * |Ming| 20|15552211521|
          * |hong| 19|13287994007|
          * | zhi| 21|15552211523|
          * +----+---+-----------+
          */
        //方法1:利用map重写
        val separator = ","
        df.map(_.toSeq.foldLeft("")(_ + separator + _).substring(1)).show()
    
        /**
          * +-------------------+
          * |              value|
          * +-------------------+
          * |Ming,20,15552211521|
          * |hong,19,13287994007|
          * | zhi,21,15552211523|
          * +-------------------+
          */
        //方法2: 使用内置函数 concat_ws
        import org.apache.spark.sql.functions._
        df.select(concat_ws(separator, $"name", $"age", $"phone").cast(StringType).as("value")).show()
    
        /**
          * +-------------------+
          * |              value|
          * +-------------------+
          * |Ming,20,15552211521|
          * |hong,19,13287994007|
          * | zhi,21,15552211523|
          * +-------------------+
          */
        //方法3:使用自定义UDF函数
    
        // 编写udf函数
        def mergeCols(row: Row): String = {
          row.toSeq.foldLeft("")(_ + separator + _).substring(1)
        }
    
        val mergeColsUDF = udf(mergeCols _)
        df.select(mergeColsUDF(struct($"name", $"age", $"phone")).as("value")).show()
    
        /**
          * /**
          * * +-------------------+
          * * |              value|
          * * +-------------------+
          * * |Ming,20,15552211521|
          * * |hong,19,13287994007|
          * * | zhi,21,15552211523|
          * * +-------------------+
          **/
          */
      }
    }

    2 DataFrame列数据的拆分

    上面我们将DataFrame的多列数据合并为一列如下所示,有时候我们也需要将单列数据,以某种拆分规则,拆分为多列。下面提供几种将一列拆分为多列的方法。

    +-------------------+
    |              value|
    +-------------------+
    |Ming,20,15552211521|
    |hong,19,13287994007|
    | zhi,21,15552211523|
    +-------------------+

    2.1 使用内置函数split,然后遍历添加列

    该方法,先利用内置函数split将单列的数据拆分,然后遍历使用getItem(角标)方法获取拆分后的数据,依次使用withColumn方法添加新列,代码如下所示:

      //方法1: 使用内置函数split,然后遍历添加列
        val separator = ","
        lazy val first = df.first()
    
        val numAttrs = first.toString().split(separator).length
        val attrs = Array.tabulate(numAttrs)(n => "col_" + n)
        //按指定分隔符拆分value列,生成splitCols列
        var newDF = df.withColumn("splitCols", split($"value", separator))
        attrs.zipWithIndex.foreach(x => {
          newDF = newDF.withColumn(x._1, $"splitCols".getItem(x._2))
        })
        newDF.show()
      /**
          * +-------------------+--------------------+-----+-----+-----------+
          * |              value|           splitCols|col_0|col_1|      col_2|
          * +-------------------+--------------------+-----+-----+-----------+
          * |Ming,20,15552211521|[Ming, 20, 155522...| Ming|   20|15552211521|
          * |hong,19,13287994007|[hong, 19, 132879...| hong|   19|13287994007|
          * | zhi,21,15552211523|[zhi, 21, 1555221...|  zhi|   21|15552211523|
          * +-------------------+--------------------+-----+-----+-----------+

    2.2 使用UDF函数创建多列数据,然后合并
    该方法是使用udf函数,生成多个列,然后合并到原来的数据。该方法参考了VectorDisassembler(与spark ml官网提供的VectorAssembler相反),这是一个第三方的spark ml向量拆分算法,该方法github地址:https://github.com/jamesbconner/VectorDisassembler。代码如下所示:

    //方法2:使用udf函数创建多列,然后合并
        val attributes: Array[Attribute] = {
          val numAttrs = first.toString().split(separator).length
          //生成attributes
          Array.tabulate(numAttrs)(i => NumericAttribute.defaultAttr.withName("value" + "_" + i))
        }
        //创建多列数据
        val fieldCols = attributes.zipWithIndex.map(x => {
          val assembleFunc = udf {
            str: String =>
              str.split(separator)(x._2)
          }
          assembleFunc(df("value").cast(StringType)).as(x._1.name.get, x._1.toMetadata())
        })
        //合并数据
        df.select(col("*") +: fieldCols: _*).show()
    
        /**
          * +-------------------+-------+-------+-----------+
          * |              value|value_0|value_1|    value_2|
          * +-------------------+-------+-------+-----------+
          * |Ming,20,15552211521|   Ming|     20|15552211521|
          * |hong,19,13287994007|   hong|     19|13287994007|
          * | zhi,21,15552211523|    zhi|     21|15552211523|
          * +-------------------+-------+-------+-----------+
          */

    完整代码:

    import org.apache.spark.ml.attribute.{Attribute, NumericAttribute}
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.sql.types.StringType
    
    /**
      * Created by shirukai on 2018/9/12
      * 拆分列
      */
    object SplitColTest {
      def main(args: Array[String]): Unit = {
        val spark = SparkSession
          .builder()
          .appName(this.getClass.getSimpleName)
          .master("local")
          .getOrCreate()
    
        //从内存中创建DataFrame
        import spark.implicits._
        val df = Seq("Ming,20,15552211521", "hong,19,13287994007", "zhi,21,15552211523")
          .toDF("value")
        df.show()
    
        /**
          * +-------------------+
          * |              value|
          * +-------------------+
          * |Ming,20,15552211521|
          * |hong,19,13287994007|
          * | zhi,21,15552211523|
          * +-------------------+
          */
    
        import org.apache.spark.sql.functions._
        //方法1: 使用内置函数split,然后遍历添加列
        val separator = ","
        lazy val first = df.first()
    
        val numAttrs = first.toString().split(separator).length
        val attrs = Array.tabulate(numAttrs)(n => "col_" + n)
        //按指定分隔符拆分value列,生成splitCols列
        var newDF = df.withColumn("splitCols", split($"value", separator))
        attrs.zipWithIndex.foreach(x => {
          newDF = newDF.withColumn(x._1, $"splitCols".getItem(x._2))
        })
        newDF.show()
    
        /**
          * +-------------------+--------------------+-----+-----+-----------+
          * |              value|           splitCols|col_0|col_1|      col_2|
          * +-------------------+--------------------+-----+-----+-----------+
          * |Ming,20,15552211521|[Ming, 20, 155522...| Ming|   20|15552211521|
          * |hong,19,13287994007|[hong, 19, 132879...| hong|   19|13287994007|
          * | zhi,21,15552211523|[zhi, 21, 1555221...|  zhi|   21|15552211523|
          * +-------------------+--------------------+-----+-----+-----------+
          */
    
        //方法2:使用udf函数创建多列,然后合并
        val attributes: Array[Attribute] = {
          val numAttrs = first.toString().split(separator).length
          //生成attributes
          Array.tabulate(numAttrs)(i => NumericAttribute.defaultAttr.withName("value" + "_" + i))
        }
        //创建多列数据
        val fieldCols = attributes.zipWithIndex.map(x => {
          val assembleFunc = udf {
            str: String =>
              str.split(separator)(x._2)
          }
          assembleFunc(df("value").cast(StringType)).as(x._1.name.get, x._1.toMetadata())
        })
        //合并数据
        df.select(col("*") +: fieldCols: _*).show()
    
        /**
          * +-------------------+-------+-------+-----------+
          * |              value|value_0|value_1|    value_2|
          * +-------------------+-------+-------+-----------+
          * |Ming,20,15552211521|   Ming|     20|15552211521|
          * |hong,19,13287994007|   hong|     19|13287994007|
          * | zhi,21,15552211523|    zhi|     21|15552211523|
          * +-------------------+-------+-------+-----------+
          */
      }
    }
  • 相关阅读:
    WPF ListView 排序
    java视频转码博客
    stream的seek方法实例
    Metro各种流转换
    性能测试并发对比(JMeter,Locust和Gatling篇)
    MYSQL之——查询练习题
    MYSQL之——复杂查询
    MYSQL之——简单查询
    MYSQL之——基础SQL
    MySQL之——忘记root密码解决方案
  • 原文地址:https://www.cnblogs.com/itboys/p/9813934.html
Copyright © 2011-2022 走看看