zoukankan      html  css  js  c++  java
  • 挑战程序设计竞赛 习题 poj 3050 Hopscotch

    地址 https://vjudge.net/problem/POJ-3050

    The cows play the child's game of hopscotch in a non-traditional way. 
    Instead of a linear set of numbered boxes into which to hop, the cows create a 5x5 rectilinear grid of digits parallel to the x and y axes.
    They then adroitly hop onto any digit in the grid and hop forward, backward, right, or left (never diagonally) to another digit in the grid.
    They hop again (same rules) to a digit (potentially a digit already visited). With a total of five intra
    -grid hops, their hops create a six-digit integer (which might have leading zeroes like 000201). Determine the count of the number of distinct integers that can be created in this manner. Input * Lines 1..5: The grid, five integers per line Output * Line 1: The number of distinct integers that can be constructed Sample Input 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 Sample Output 15 Hint OUTPUT DETAILS: 111111, 111112, 111121, 111211, 111212, 112111, 112121, 121111, 121112, 121211, 121212, 211111, 211121, 212111,
    and 212121 can be constructed.
    No other values are possible.

    代码 

    #include <iostream>
    #include <set>
    #include <vector>
    
    using namespace std;
    
    int arr[6][6];
    set<vector<int>> ss;
    
    int addx[4] = {1,-1,0,0};
    int addy[4] = {0,0,-1,1};
    
    void dfs(int x,int y,vector<int>& v)
    {
      if(v.size() == 6){
        ss.insert(v); return;
      }
       v.push_back(arr[x][y]);
        for(int i =0;i < 4;i++){
          int newx = x+ addx[i];
          int newy = y +addy[i];
            if(newx>=0 && newx<5 && newy>=0 && newy <5){
                 dfs(newx,newy,v);
              }
    
        }      
     
       
      v.pop_back();
       return ;
    }
    
    int main(){
    for(int i =0; i < 5;i++){
    for(int j = 0; j<5;j++){
     cin >> arr[i][j];
    }
    }
    
    for(int i =0; i < 5;i++){
    for(int j = 0; j<5;j++){
       vector<int> v;
       dfs(i,j,v);
    }
    }
    cout << ss.size() << endl;
     return 0;
    }
  • 相关阅读:
    从内积的观点来看线性方程组
    《线性规划》(卢开澄,卢华明) 例2.1
    斐波那契数列
    共几只桃子
    计算 $s=1+(1+2)+(1+2+3)+cdots+(1+2+3+cdots+n)$
    【★】路由环路大总结!
    Apache与Tomcat有什么关系和区别
    Apache与Tomcat有什么关系和区别
    逻辑卷、物理卷、卷组 的关系
    逻辑卷、物理卷、卷组 的关系
  • 原文地址:https://www.cnblogs.com/itdef/p/14288654.html
Copyright © 2011-2022 走看看