zoukankan      html  css  js  c++  java
  • 单因素特征选择--Univariate Feature Selection

    An example showing univariate feature selection.

    Noisy (non informative) features are added to the iris data and univariate feature selection(单因素特征选择) is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights.

    In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification.

    #encoding:utf-8
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets,svm
    from sklearn.feature_selection import SelectPercentile,f_classif
    
    ###load iris dateset
    iris=datasets.load_iris()
    
    ###Some Noisy data not correlated
    E=np.random.uniform(0,0.1,size=(len(iris.data),20)) ###uniform distribution   150*20
    X=np.hstack((iris.data,E))
    y=iris.target
    
    plt.figure(1)
    plt.clf()
    
    X_indices=np.arange(X.shape[-1])   ###X.shape=(150,24)    X.shape([-1])=24
    
    selector=SelectPercentile(f_classif,percentile=10)
    selector.fit(X,y)
    scores=-np.log10(selector.pvalues_)
    scores/=scores.max()
    
    plt.bar(X_indices-0.45,scores,width=0.2,label=r"Univariate score ($-Log(p_{value})$)",color='darkorange')
    # plt.show()
    
    
    ####Compare to weight of an svm
    clf=svm.SVC(kernel='linear')
    clf.fit(X,y)
    
    svm_weights=(clf.coef_**2).sum(axis=0)
    svm_weights/=svm_weights.max()
    plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight',
            color='navy')
    clf_selected=svm.SVC(kernel='linear')
    # clf_selected.fit(selector.transform((X,y)))
    clf_selected.fit(selector.transform(X),y)
    
    svm_weights_selected=(clf_selected.coef_**2).sum(axis=0)
    svm_weights_selected/=svm_weights_selected.max()
    
    plt.bar(X_indices[selector.get_support()]-.05,svm_weights_selected,width=.2,label='SVM weight after selection',color='c')
    
    plt.title("Comparing feature selection")
    plt.xlabel('Feature number')
    plt.yticks(())
    plt.axis('tight')
    plt.legend(loc='upper right')
    plt.show()
    

     实验结果:

  • 相关阅读:
    快速认识 Spring Boot 技术栈
    Spring JDBC Template -实验介绍
    Spring 基于注解的配置 -实验介绍
    Spring 自动扫描与装配 -实验介绍
    Spring IoC 容器 -实验介绍
    Spring 框架的 AOP -实验介绍
    使用 AspectJ 框架实现 Spring AOP
    Spring框架自动创建 proxy
    Spring 框架的 AOP
    考研计算机专业课基础:计算机结构化编程
  • 原文地址:https://www.cnblogs.com/itdyb/p/6098513.html
Copyright © 2011-2022 走看看