zoukankan      html  css  js  c++  java
  • 单因素特征选择--Univariate Feature Selection

    An example showing univariate feature selection.

    Noisy (non informative) features are added to the iris data and univariate feature selection(单因素特征选择) is applied. For each feature, we plot the p-values for the univariate feature selection and the corresponding weights of an SVM. We can see that univariate feature selection selects the informative features and that these have larger SVM weights.

    In the total set of features, only the 4 first ones are significant. We can see that they have the highest score with univariate feature selection. The SVM assigns a large weight to one of these features, but also Selects many of the non-informative features. Applying univariate feature selection before the SVM increases the SVM weight attributed to the significant features, and will thus improve classification.

    #encoding:utf-8
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn import datasets,svm
    from sklearn.feature_selection import SelectPercentile,f_classif
    
    ###load iris dateset
    iris=datasets.load_iris()
    
    ###Some Noisy data not correlated
    E=np.random.uniform(0,0.1,size=(len(iris.data),20)) ###uniform distribution   150*20
    X=np.hstack((iris.data,E))
    y=iris.target
    
    plt.figure(1)
    plt.clf()
    
    X_indices=np.arange(X.shape[-1])   ###X.shape=(150,24)    X.shape([-1])=24
    
    selector=SelectPercentile(f_classif,percentile=10)
    selector.fit(X,y)
    scores=-np.log10(selector.pvalues_)
    scores/=scores.max()
    
    plt.bar(X_indices-0.45,scores,width=0.2,label=r"Univariate score ($-Log(p_{value})$)",color='darkorange')
    # plt.show()
    
    
    ####Compare to weight of an svm
    clf=svm.SVC(kernel='linear')
    clf.fit(X,y)
    
    svm_weights=(clf.coef_**2).sum(axis=0)
    svm_weights/=svm_weights.max()
    plt.bar(X_indices - .25, svm_weights, width=.2, label='SVM weight',
            color='navy')
    clf_selected=svm.SVC(kernel='linear')
    # clf_selected.fit(selector.transform((X,y)))
    clf_selected.fit(selector.transform(X),y)
    
    svm_weights_selected=(clf_selected.coef_**2).sum(axis=0)
    svm_weights_selected/=svm_weights_selected.max()
    
    plt.bar(X_indices[selector.get_support()]-.05,svm_weights_selected,width=.2,label='SVM weight after selection',color='c')
    
    plt.title("Comparing feature selection")
    plt.xlabel('Feature number')
    plt.yticks(())
    plt.axis('tight')
    plt.legend(loc='upper right')
    plt.show()
    

     实验结果:

  • 相关阅读:
    Gym 100801D Distribution in Metagonia (数学思维题)
    Gym 100801E Easy Arithmetic (思维题)
    GNOME编辑器--gedit 构建基本脚本
    linux默认编辑器 sublime
    su和su-命令的本质区别
    #ifdef #ifndef使用
    linux 安装软件程序
    linux命令行与shell脚本编程大全---更多bash shell命令
    预处理语句--#define、#error和#warning
    FW开发代码规范---小任性(2)
  • 原文地址:https://www.cnblogs.com/itdyb/p/6098513.html
Copyright © 2011-2022 走看看