AGC004
A - Divide a Cuboid
看哪一维是偶数,答案是0,否则是三个数两两组合相乘中最小的那个
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('
')
#define eps 1e-10
#define MAXN 1000005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int A,B,C;
void Solve() {
read(A);read(B);read(C);
if(A % 2 == 0 || B % 2 == 0 || C % 2 == 0) {out(0);enter;}
else {
out(min(min(1LL * A * B,1LL * B * C),1LL * A * C));enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
B - Colorful Slimes
枚举第二种操作的次数是k,每个slime获得的时间可以成为前k个(循环)中最小的那个时间
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('
')
#define eps 1e-10
#define MAXN 2005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,len[MAXN * 2];
int64 x,a[MAXN * 2],st[MAXN * 2][15];
int64 query(int l,int r) {
int t = len[r - l + 1];
return min(st[l][t],st[r - (1 << t) + 1][t]);
}
void Solve() {
read(N);read(x);
for(int i = 1 ; i <= N ; ++i) {read(a[i]);a[i + N] = a[i];st[i][0] = a[i];st[i + N][0] = a[i];}
for(int j = 1 ; j <= 13 ; ++j) {
for(int i = 1 ; i <= 2 * N ; ++i) {
if(i + (1 << j) - 1 > 2 * N) break;
st[i][j] = min(st[i][j - 1],st[i + (1 << j - 1)][j - 1]);
}
}
for(int i = 2 ; i <= 2 * N ; ++i) len[i] = len[i / 2] + 1;
int64 ans = 1e18;
for(int i = 0 ; i <= N ; ++i) {
int64 tmp = i * x;
for(int j = 1 ; j <= N ; ++j) {
tmp += query(j + N - i,j + N);
}
ans = min(ans,tmp);
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
C - AND Grid
直接最上列蓝色,最下列红色,中间奇数列(除了顶端和底端)红色,偶数列蓝色,再把紫色的分配给两个,这时候一定两个都连通且只有紫色部分重合
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('
')
#define eps 1e-10
#define MAXN 505
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int H,W;
char s[MAXN][MAXN];
char a[MAXN][MAXN],b[MAXN][MAXN];
void Solve() {
read(H);read(W);
for(int i = 1 ; i <= H ; ++i) scanf("%s",s[i] + 1);
for(int i = 1 ; i <= H ; ++i) {
for(int j = 1 ; j <= W ; ++j) {
a[i][j] = b[i][j] = s[i][j];
}
}
for(int i = 1 ; i <= W ; ++i) {a[1][i] = '#';b[H][i] = '#';}
for(int j = 1 ; j <= W ; ++j) {
if(j & 1) {
for(int i = 1 ; i < H ; ++i) a[i][j] = '#';
}
else {
for(int i = 2 ; i <= H ; ++i) b[i][j] = '#';
}
}
for(int i = 1 ; i <= H ; ++i) {
for(int j = 1 ; j <= W ; ++j) {
putchar(a[i][j]);
}
enter;
}
enter;
for(int i = 1 ; i <= H ; ++i) {
for(int j = 1 ; j <= W ; ++j) {
putchar(b[i][j]);
}
enter;
}
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
D - Teleporter
初始是一个基环内向树,如果有一个环大于1无论如何存在一个点使得k步之后不在1,于是把1的边连向自己,然后就变成了一棵树,dp,每遇到大于k步的时候都把那个点的边直接连到1即可
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('
')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int to,next;
}E[MAXN * 2];
int N,K,head[MAXN],sumE;
int a[MAXN],ans;
int rem[MAXN];
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void dfs(int u) {
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
dfs(v);
if(rem[v] == K - 1 && u != 1) {++ans;rem[v] = -1;}
rem[u] = max(rem[u],rem[v] + 1);
}
}
void Solve() {
read(N);read(K);
for(int i = 1 ; i <= N ; ++i) {
read(a[i]);
}
if(a[1] != 1) ++ans;
for(int i = 2 ; i <= N ; ++i) {
add(a[i],i);
}
dfs(1);
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
E - Salvage Robots
设(dp[i][j][k][t])表示Exit向上最多延伸i,向下最多延伸k,向左最多延伸j,向右最多延伸t
此时下边i行,上面k行,左边t列,右边j列,全都不合法,如果我们要向上下左右扩展某一行某一列,那么需要在合法的区域内选择这一行或这一列的机器人个数
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('
')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int H,W;
char s[105][105];
int sum[105][105],a,b;
int dp[2][105][105][105],ans;
int query(int x1,int y1,int x2,int y2) {
x2 = min(H,x2);y2 = min(W,y2);
if(x1 > x2 || y1 > y2) return 0;
return sum[x2][y2] - sum[x2][y1 - 1] - sum[x1 - 1][y2] + sum[x1 - 1][y1 - 1];
}
void update(int &x,int y) {
x = max(x,y);
}
void Solve() {
read(H);read(W);
for(int i = 1 ; i <= H ; ++i) scanf("%s",s[i] + 1);
for(int i = 1 ; i <= H ; ++i) {
for(int j = 1 ; j <= W ; ++j) {
sum[i][j] = (s[i][j] == 'o');
sum[i][j] += sum[i][j - 1];
if(s[i][j] == 'E') {a = i;b = j;}
}
}
for(int i = 1 ; i <= H ; ++i) {
for(int j = 1 ; j <= W ; ++j) {
sum[i][j] += sum[i - 1][j];
}
}
int cur = 0;
dp[0][0][0][0] = 0;
for(int i = 0 ; i < a ; ++i) {
memset(dp[cur ^ 1],0,sizeof(dp[cur ^ 1]));
for(int j = 0 ; j < b ; ++j) {
for(int k = 0 ; k <= H - a ; ++k) {
for(int t = 0 ; t <= W - b ; ++t) {
ans = max(ans,dp[cur][j][k][t]);
int tmp = dp[cur][j][k][t];
if(k < a - i - 1) tmp += query(a - i - 1,max(b - j,t + 1),a - i - 1,min(b + t,W - j));
update(dp[cur ^ 1][j][k][t],tmp);
tmp = dp[cur][j][k][t];
if(t < b - j - 1) tmp += query(max(a - i,k + 1),b - j - 1,min(a + k,H - i),b - j - 1);
update(dp[cur][j + 1][k][t],tmp);
tmp = dp[cur][j][k][t];
if(H - i >= a + k + 1) tmp += query(a + k + 1,max(b - j,t + 1),a + k + 1,min(b + t,W - j));
update(dp[cur][j][k + 1][t],tmp);
tmp = dp[cur][j][k][t];
if(W - j >= b + t + 1) tmp += query(max(a - i,k + 1),b + t + 1,min(a + k,H - i),b + t + 1);
update(dp[cur][j][k][t + 1],tmp);
}
}
}
cur ^= 1;
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}
F - Namori
十分钟内轻松水过1500(我吊打yutaka了),痛骂出题人居然给这么简单的部分分1500然后E题1400?肝E注定失败?
然后开始水基环树,大胆猜结论觉得断边可行,但是样例告诉我奇环不行,偶环过了很多但是没全过(用assert判的奇环偶环)
实际上转化一下问题,树肯定是个二分图,我们把它二分图染色,我们要做的就是把初始的染黑和染白交换位置,如果黑白个数不相等肯定不行
然后我们只需要一个简单的dp从下往上计算就可以了
对于偶环树呢,我们抽出环中的一条边((u ightarrow v))然后认为这个边上走过的黑色标记有x个(x是负的那么就是从v到u)
每条边走过的黑色节点都可以用含x的代数式表示,答案是取某个x这些代数式绝对值和的最小值
是个凹函数,可以三分
对于奇环树呢,我们相当于多了两个操作,就是选出环上的一条边作为特殊边,边上相邻两点可以删掉两个标记或者同时增加两个标记
记录下环上每个点缺少多少,然后从两个端点分别让这些标记开始走即可
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(' ')
#define enter putchar('
')
#define eps 1e-10
#define MAXN 100005
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 +c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar('-');}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
struct node {
int to,next;
}E[MAXN * 2];
int N,head[MAXN],sumE,M,fa[MAXN],dep[MAXN],st,ed;
int64 dp[MAXN][2],ans;
bool vis[MAXN];
int c[MAXN],tot,col[MAXN],rec[2],ned[MAXN];
pii val[MAXN];
vector<pii > f;
vector<int> dfn;
void add(int u,int v) {
E[++sumE].to = v;
E[sumE].next = head[u];
head[u] = sumE;
}
void dfs(int u) {
dp[u][0] = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(v != fa[u]) {
fa[v] = u;
dfs(v);
ans += dp[v][0] + dp[v][1];
dp[u][0] += dp[v][1];
dp[u][1] += dp[v][0];
}
}
int t = min(dp[u][0],dp[u][1]);
dp[u][0] -= t;dp[u][1] -= t;
}
void find_circle(int u) {
dep[u] = dep[fa[u]] + 1;
vis[u] = 1;
dfn.pb(u);
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) {
fa[v] = u;
col[v] = col[u] ^ 1;
find_circle(v);
}
else if(dep[v] < dep[u] && v != fa[u]) {
st = u;ed = v;
}
}
}
int64 Calc(int64 x) {
int64 res = 0;
for(auto t : f) {
res += abs(t.fi * x + t.se);
}
return res;
}
void EvenCircle() {
for(int i = dfn.size() - 1 ; i >= 0 ; --i) {
int u = dfn[i];
pii p = val[u];
if(u == st) {
f.pb(mp(1,0));
p.fi -= 1;
}
else if(u == ed) p.fi += 1;
if(col[u] == 0) p.se--;
else p.se++;
if(fa[u]) {
f.pb(p);
val[fa[u]].fi += p.fi;val[fa[u]].se += p.se;
}
}
int64 L = -N,R = N;
while(R - L >= 3) {
int64 Lb = L + (R - L) / 3;
int64 Rb = R - (R - L) / 3;
if(Calc(Lb) > Calc(Rb)) L = Lb;
else R = Rb;
}
int64 res = 1e18;
for(int64 i = L ; i <= R ; ++i) res = min(res,Calc(i));
out(res);enter;
}
void Calc_need(int u) {
if(col[u]) ned[u] = -1;
else ned[u] = 1;
vis[u] = 1;
for(int i = head[u] ; i ; i = E[i].next) {
int v = E[i].to;
if(!vis[v]) {
Calc_need(v);
ans += abs(ned[v]);
ned[u] += ned[v];
}
}
}
void OddCircle() {
int64 add = (rec[1] - rec[0]) / 2;
memset(vis,0,sizeof(vis));
for(int i = 1 ; i <= tot ; ++i) {
vis[c[i]] = 1;
}
for(int i = 1 ; i <= tot ; ++i) {
Calc_need(c[i]);
}
ned[c[1]] += add;
ned[c[tot]] += add;
for(int i = 2 ; i <= tot ; ++i) {
ans += abs(ned[c[i - 1]]);
ned[c[i]] += ned[c[i - 1]];
ned[c[i - 1]] = 0;
}
for(int i = tot - 1 ; i >= 1 ; --i) {
ans += abs(ned[c[i + 1]]);
ned[c[i]] += ned[c[i + 1]];
}
out(ans + abs(add));enter;
}
void Process() {
find_circle(1);
for(int i = 1 ; i <= N ; ++i) {
rec[col[i]]++;
}
int p = st;
while(1) {
c[++tot] = p;
if(p == ed) break;
p = fa[p];
}
if(tot % 2 == 0) {
if(rec[0] != rec[1]) {puts("-1");return;}
EvenCircle();
}
else {
if((rec[0] ^ rec[1]) & 1) {puts("-1");return;}
OddCircle();
}
}
void Solve() {
srand(time(0));
read(N);read(M);
int a,b;
for(int i = 1 ; i <= M ; ++i) {
read(a);read(b);
add(a,b);add(b,a);
}
if(N & 1) {puts("-1");return;}
if(M == N - 1) {
dfs(1);
if(dp[1][0] || dp[1][1]) {puts("-1");return;}
out(ans);enter;
}
else Process();
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}