zoukankan      html  css  js  c++  java
  • 【LOJ】#3102. 「JSOI2019」神经网络

    LOJ#3102. 「JSOI2019」神经网络

    首先我们容易发现就是把树拆成若干条链,然后要求这些链排在一个环上,同一棵树的链不相邻

    把树拆成链可以用一个简单(但是需要复杂的分类讨论)的树背包实现

    (dp[u][j][0/1/2])表示第(u)个点已经选了(j)条链,0是两个不同子树的链拼到一起,1是只有1个点,2是有一条至少有两个点的链

    通过这个我们可以求一个(f[k])表示把这棵树分成(k)条链有几种情况

    环排列可以通过全排列除以排列长度得到

    我们设把(k)条链分成(h)个小块,这样我们至少有了(k - h)对点同一棵树且相邻,容斥系数乘上((-1)^{k - h}),对于全排列来说,我们还需要除以(h!)

    所以列出一个这样的EGF

    (f[k]k!inom{k - 1}{h - 1} frac{x^{h}}{h!})

    就可以卷积了

    然后对于答案的(x^{h})乘上((h - 1)!)因为是环排

    就可以得到答案

    #include <bits/stdc++.h>
    #define fi first
    #define se second
    #define pii pair<int,int>
    #define mp make_pair
    #define pb push_back
    #define space putchar(' ')
    #define enter putchar('
    ')
    #define eps 1e-10
    #define ba 47
    #define MAXN 5005
    //#define ivorysi
    using namespace std;
    typedef long long int64;
    typedef unsigned int u32;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;T f = 1;char c = getchar();
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 +c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {x = -x;putchar('-');}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    const int MOD = 998244353,MAXL = (1 << 15);
    int W[MAXL + 5];
    int fac[100005],invfac[100005];
    int inc(int a,int b) {
        return a + b >= MOD ? a + b - MOD : a + b;
    }
    int mul(int a,int b) {
        return 1LL * a * b % MOD;
    }
    void update(int &x,int y) {
        x = inc(x,y);
    }
    int fpow(int x,int c) {
        int res = 1,t = x;
        while(c) {
    	if(c & 1) res = mul(res,t);
    	t = mul(t,t);
    	c >>= 1;
        }
        return res;
    }
    int C(int n,int m) {
        if(n < m) return 0;
        else return mul(fac[n],mul(invfac[m],invfac[n - m]));
    }
    void NTT(vector<int> &f,int l,int on) {
        f.resize(l);
        for(int i = 1,j = l >> 1 ; i < l - 1 ; ++i) {
    	if(i < j) swap(f[i],f[j]);
    	int k = l >> 1;
    	while(j >= k) {
    	    j -= k;
    	    k >>= 1;
    	}
    	j += k;
        }
        for(int h = 2 ; h <= l ; h <<= 1) {
    	int wn = W[(MAXL + on * MAXL / h) % MAXL];
    	for(int k = 0 ; k < l ; k += h) {
    	    int w = 1;
    	    for(int j = k ; j < k + h / 2 ; ++j) {
    		int u = f[j],t = mul(w,f[j + h / 2]);
    		f[j] = inc(u,t);
    		f[j + h / 2] = inc(u,MOD - t);
    		w = mul(w,wn);
    	    }
    	}
        }
        if(on == -1) {
    	int invL = fpow(l,MOD - 2);
    	for(int i = 0 ; i < l ; ++i) f[i] = mul(f[i],invL);
        }
    }
    vector<int> operator * (vector<int> a,vector<int> b) {
        vector<int> c;
        int l = 1;
        while(l <= a.size() - 1 + b.size() - 1) l <<= 1;
        NTT(a,l,1);NTT(b,l,1);
        c.resize(l);
        for(int i = 0 ; i < l ; ++i) c[i] = mul(a[i],b[i]);
        NTT(c,l,-1);
        int s = c.size() - 1;
        while(s > 0) {
    	if(c[s] == 0) {c.pop_back();--s;}
    	else break;
        }
        return c;
    }
    void Init() {
        W[0] = 1;W[1] = fpow(3,(MOD - 1) / MAXL); 
        for(int i = 2 ; i < MAXL ; ++i) W[i] = mul(W[i - 1],W[1]);
        fac[0] = 1;
        for(int i = 1 ; i <= 100000 ; ++i) fac[i] = mul(fac[i - 1],i);
        invfac[100000] = fpow(fac[100000],MOD - 2);
        for(int i = 99999 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
    }
    int M,K;
    struct node {
        int to,next;
    }E[100005];
    int head[5005],sumE,siz[5005];
    int dp[5005][5005][3],g[5005][3],f[5005],all;
    vector<int> z,ans;
    void add(int u,int v) {
        E[++sumE].to = v;
        E[sumE].next = head[u];
        head[u] = sumE;
    }
    void dfs(int u,int fa) {
        dp[u][0][1] = 1;
        siz[u] = 1;
        for(int i = head[u] ; i ; i = E[i].next) {
    	int v = E[i].to;
    	if(v != fa) {
    	    dfs(v,u);
    	    for(int j = 0 ; j <= siz[u] + siz[v] ; ++j) memset(g[j],0,sizeof(g[j]));
    	    for(int j = 0 ; j <= siz[u] ; ++j) {
    		for(int h = 0 ; h <= siz[v] ; ++h) {
    		    int t0 = inc(dp[v][h][1],mul(dp[v][h][2],2));
    		    int t1 = inc(dp[v][h][1],dp[v][h][2]);
    		    update(g[j + h][0],mul(dp[u][j][0],dp[v][h][0]));
    		    update(g[j + h + 1][0],mul(dp[u][j][0],t0));;
    		    update(g[j + h][1],mul(dp[u][j][1],dp[v][h][0]));
    		    update(g[j + h + 1][1],mul(dp[u][j][1],t0));
    		    update(g[j + h][2],mul(dp[u][j][1],t1));
    		    update(g[j + h][2],mul(dp[u][j][2],dp[v][h][0]));
    		    update(g[j + h + 1][2],mul(dp[u][j][2],t0));
    		    update(g[j + h + 1][0],mul(dp[u][j][2],mul(2,t1)));
    		}
    	    }
    	    siz[u] += siz[v];
    	    for(int j = 0 ; j <= siz[u] ; ++j) {
    		for(int h = 0 ; h < 3 ; ++h) {
    		    dp[u][j][h] = g[j][h];
    		}
    	    }
    	}
        }
        if(!fa) {
    	memset(f,0,sizeof(f));
    	for(int j = 0 ; j <= siz[1] ; ++j) {
    	    update(f[j],dp[1][j][0]);
    	    update(f[j + 1],dp[1][j][1]);
    	    update(f[j + 1],mul(2,dp[1][j][2]));
    	}
        }
    }
    void Solve() {
        read(M);
        ans.pb(1);
        for(int i = 1 ; i <= M ; ++i) {
    	sumE = 0;
    	memset(head,0,sizeof(head));
    	memset(siz,0,sizeof(siz));
    	for(int j = 0 ; j <= K ; ++j) {
    	    for(int h = 0 ; h <= K ; ++h) {
    		memset(dp[j][h],0,sizeof(dp[j][h]));
    	    }
    	}
    	read(K);
    	all += K;
    	int a,b;
    	for(int j = 1 ; j < K ; ++j) {
    	    read(a);read(b);
    	    add(a,b);add(b,a);
    	}
    	dfs(1,0);
    	z.clear();
    	z.resize(K + 1);
    	for(int j = K ; j >= 1 ; --j) {
    	    int a = mul(f[j],fac[j]);
    	    for(int h = j ; h >= 1 ; --h) {
    		int t = mul(a,C(j - 1,h - 1));
    		if((j - h) & 1) t = MOD - t;
    		update(z[h],t);
    	    }
    	}
    	for(int j = 0 ; j <= K ; ++j) z[j] = mul(z[j],invfac[j]);
    	ans = ans * z;
        }
        int res = 0;
        for(int i = 1 ; i <= all ; ++i) {
    	update(res,mul(ans[i],fac[i - 1]));
        }
        out(res);enter;
    }
    int main(){
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        Init();
        Solve();
    }
    
  • 相关阅读:
    Can we call an undeclared function in C++?
    Template Metaprogramming in C++
    Templates and Default Arguments
    Templates and Static variables in C++
    Default Assignment Operator and References
    Advanced C++ | Conversion Operators
    Use of explicit keyword in C++
    When should we write our own assignment operator in C++?
    Copy constructor vs assignment operator in C++
    VMWare关闭beep声
  • 原文地址:https://www.cnblogs.com/ivorysi/p/11010140.html
Copyright © 2011-2022 走看看