zoukankan      html  css  js  c++  java
  • 【51nod】1594 Gcd and Phi

    题解

    跟随小迪学姐的步伐,学习一下数论
    小迪学姐太巨了!

    这道题的式子很好推嘛

    (sum_{i = 1}^{n} sum_{j = 1}^{n} sum_{d|phi(i),phi(j)} phi(d) [gcd(frac{phi(i)}{d},frac{phi(j)}{d}) == 1])
    (sum_{i = 1}^{n} sum_{j = 1}^{n} sum_{d|phi(i),phi(j)} phi(d) sum_{t | frac{phi(i)}{d},frac{phi(j)}{d}} mu(t))
    (sum_{i = 1}^{n} sum_{j = 1}^{n} sum_{T|phi(i),phi(j)} sum_{d|T}phi(d)mu(frac{T}{d}))
    (g(T) = sum_{d|T}phi(d)mu(frac{T}{d}))
    (sum_{i = 1}^{n} sum_{j = 1}^{n} sum_{T|phi(i),phi(j)} g(T))
    (f(T) = sum_{i = 1}^{n} phi(i) == T)
    那么最后的答案就是
    (sum_{T = 1}^{n} g(T) [sum_{T|k} f(k)]^2)
    复杂度(O(n log n))

    代码

    #include <bits/stdc++.h>
    #define MAXN 2000005
    //#define ivorysi
    #define enter putchar('
    ')
    #define space putchar(' ')
    #define fi first
    #define se second
    #define pb push_back
    #define mp make_pair
    #define eps 1e-8
    #define pii pair<int,int>
    using namespace std;
    typedef long long int64;
    typedef double db;
    template<class T>
    void read(T &res) {
        res = 0;char c = getchar();T f = 1;
        while(c < '0' || c > '9') {
    	if(c == '-') f = -1;
    	c = getchar();
        }
        while(c >= '0' && c <= '9') {
    	res = res * 10 + c - '0';
    	c = getchar();
        }
        res *= f;
    }
    template<class T>
    void out(T x) {
        if(x < 0) {putchar('-');x = -x;}
        if(x >= 10) {
    	out(x / 10);
        }
        putchar('0' + x % 10);
    }
    int T,N;
    int64 phi[MAXN],mu[MAXN],f[MAXN],g[MAXN];
    bool nonprime[MAXN];
    int prime[MAXN],tot;
    void Solve() {
        read(N);
        int64 ans = 0;
        memset(f,0,sizeof(f));
        for(int i = 1 ; i <= N ; ++i) f[phi[i]]++;
        for(int i = 1 ; i <= N ; ++i) {
    	int64 s = 0;
    	int t = i;
    	while(t <= N) s += f[t],t += i;
    	ans += g[i] * s * s;
        }
        out(ans);enter;
    }
    int main() {
    #ifdef ivorysi
        freopen("f1.in","r",stdin);
    #endif
        read(T);
        mu[1] = 1;
        phi[1] = 1;
        for(int i = 2 ; i <= 2000000 ; ++i) {
    	if(!nonprime[i]) {
    	    prime[++tot] = i;
    	    phi[i] = i - 1;
    	    mu[i] = -1;
    	}
    	for(int j = 1 ; j <= tot ; ++j) {
    	    if(prime[j] > 2000000 / i) break;
    	    nonprime[i * prime[j]] = 1;
    	    if(i % prime[j] == 0) phi[i * prime[j]] = phi[i] * prime[j],mu[i * prime[j]] = 0;
    	    else phi[i * prime[j]] = phi[i] * (prime[j] - 1),mu[i * prime[j]] = -mu[i];
    	}
        }
        for(int i = 1 ; i <= 2000000 ; ++i) {
    	int t = i;
    	while(t <= 2000000) {
    	    g[t] += phi[i] * mu[t / i];
    	    t += i;
    	}
        }
        while(T--) {
    	Solve();
        }
        return 0;
    }
    
  • 相关阅读:
    2018.12.30【NOIP提高组】模拟赛C组总结
    【NOIP2007提高组】矩阵取数游戏
    【NOIP2007提高组】字符串的展开
    【NOIP2007提高组】统计数字
    2018.12.22【NOIP提高组】模拟B组总结
    【NOIP2013模拟11.5A组】cza的蛋糕(cake)
    CDQ分治总结
    O(2),O(3),Ofast 手动开[吸氧]
    【NOIP2013模拟11.6A组】灵能矩阵(pylon)
    【GDKOI2012模拟02.01】数字
  • 原文地址:https://www.cnblogs.com/ivorysi/p/9155736.html
Copyright © 2011-2022 走看看