题解
k叉哈夫曼树,但是没有了二叉那样的最后一定能合并成一个树根的优秀性质,我们就不断模拟操作看看到了哪一步能用的节点数< k,然后先拿这些节点数合并起来
然后就可以k个k个合并了,大小一样先拿深度小的
代码
#include <bits/stdc++.h>
//#define ivorysi
#define enter putchar('
')
#define space putchar(' ')
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define eps 1e-8
#define mo 974711
#define MAXN 100005
#define pii pair<int,int>
using namespace std;
typedef long long int64;
typedef double db;
template<class T>
void read(T &res) {
res = 0;char c = getchar();T f = 1;
while(c < '0' || c > '9') {
if(c == '-') f = -1;
c = getchar();
}
while(c >= '0' && c <= '9') {
res = res * 10 + c - '0';
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {putchar('-');x = -x;}
if(x >= 10) {
out(x / 10);
}
putchar('0' + x % 10);
}
int N,K;
int64 W[MAXN],ql,qr,Q[MAXN],l1,ans,dep[MAXN];
void Solve() {
read(N);read(K);
for(int i = 1 ; i <= N ; ++i) read(W[i]);
sort(W + 1,W + N + 1);
l1 = 1;ql = 1,qr = 0;
int t = N;
while(t >= K) t = t - K + 1;
if(t != 1) {
for(int i = 1 ; i <= t ; ++i) {
ans += W[i];
++l1;
}
Q[++qr] = ans;
dep[qr] = 1;
}
t = N - t + 1;
while(t != 1) {
int64 tmp = 0,d = 1;
for(int j = 1 ; j <= K ; ++j) {
int64 t;
if(ql <= qr && l1 <= N) {
if(W[l1] <= Q[ql]) t = W[l1],++l1;
else t = Q[ql],d = max(d,dep[ql] + 1),++ql;
}
else if(ql <= qr) {
t = Q[ql],d = max(d,dep[ql] + 1),++ql;
}
else t = W[l1],++l1;
tmp += t;
}
ans += tmp;
Q[++qr] = tmp;
dep[qr] = d;
t = t - K + 1;
}
out(ans);enter;out(dep[qr]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
return 0;
}