Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
The minimum path sum from top to bottom is 11
(i.e., 2 + 3 + 5 + 1 = 11).
方法一
bottom up 从下往上
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { if (triangle == null || triangle.size() == 0) { return 0; } int n = triangle.size(); int[][] dp = new int[n][n]; for (int i = 0; i < n; i++) { dp[n - 1][i] = triangle.get(n-1).get(i); } for (int i = n - 2; i >= 0; i--) { for (int j = 0; j < triangle.get(i).size(); j++) { dp[i][j] = Math.min(dp[i + 1][j], dp[i + 1][j + 1]) + triangle.get(i).get(j); } } return dp[0][0]; } }
第二种方法,从上往下
public class Solution { public int minimumTotal(List<List<Integer>> triangle) { if (triangle == null || triangle.size() == 0) { return 0; } int n = triangle.size(); int[][] dp = new int[n][n]; dp[0][0] = triangle.get(0).get(0); for (int i = 1; i < n; i++) { dp[i][0] = dp[i - 1][0] + triangle.get(i).get(0); dp[i][i] = dp[i - 1][i - 1] + triangle.get(i).get(i); } for (int i = 1; i < n; i++) { for (int j = 1; j < i; j++) { dp[i][j] = Math.min(dp[i - 1][j - 1], dp[i - 1][j]) + triangle.get(i).get(j); } } int min = dp[n - 1][0]; for (int i = 1; i < n; i++) { min = Math.min(min, dp[n - 1][i]); } return min; } }