zoukankan      html  css  js  c++  java
  • Sumdiv POJ

    Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

    Input

    The only line contains the two natural numbers A and B, (0 <= A,B <= 50000000)separated by blanks.OutputThe only line of the output will contain S modulo 9901.

    Sample Input

    2 3

    Sample Output

    15

    Hint 2^3 = 8.
    The natural divisors of 8 are: 1,2,4,8. Their sum is 15.
    15 modulo 9901 is 15 (that should be output).

    题意:求AB的所有约数的和  % MOD (9901)    题意中有点问题,我们知道0是没有约数的,我觉得A、B应该都是>0的

    思路:我们可以把A分解质因数(p1c1  *  p2c2  *  .... * pncnB

    约数和:(1 + p1 + p12 + ... + p1B*c1)* (1 + p2 + p22 + ... + p2B*c2)* .... * (1 + pn + pn2 + ... + pnB*cn)    ( 排列组合问题)

    这样我们可以看出这是多个等比数列乘积,可以用等比数列求和公式  (a1 *(1-qn))/(1-q),我们注意到这里有除法,但是同余模定理是对于加减乘的,那么我们可以利用费马小定理,

    求出(1-q)的逆元,然后把除变成乘逆元

    坑点:应为 9901 这个质数较小,很容易找到一个数x,(x-1)% MOD == 0 ,就说明这个数是没有逆元的(例217823),那么对于这种情况,我们不能用逆元算,你会发现这种情况下,

    pn % MOD == 1  ((p-1)% MOD == 0)),这样(1 + pn + pn2 + ... + pnB*cn) == (1 % MOD + pn %MOD + pn2 %MOD + ... + pnB*cn %MOD) == B*cn+1

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<math.h>
     4 using namespace std;
     5 
     6 const int maxn = 1e4;
     7 const int mod = 9901;
     8 int a,b;
     9 int p[maxn];
    10 int c[maxn];
    11 int calc(int x)
    12 {
    13     int m= 0;
    14     int up = sqrt(x);
    15     for(int i=2;i<=up;i++)
    16     {
    17         if(x % i == 0)p[++m] = i,c[m] = 0;
    18         while(x % i == 0)x/= i,c[m]++;
    19     }
    20     if(x > 1)p[++m] = x,c[m] = 1;
    21     return m;
    22 }
    23 
    24 typedef long long ll;
    25 
    26 ll qpow(ll a,ll b)
    27 {
    28     ll ans = 1;
    29     ll base = a;
    30     while(b)
    31     {
    32         if(b&1)ans = (ans * base)%mod;
    33         base = (base * base)%mod;
    34         b >>= 1;
    35     }
    36     return ans;
    37 }
    38 int main()
    39 {
    40     scanf("%d%d",&a,&b);
    41     int n = calc(a);
    42     ll ans = 1;
    43     for(int i=1;i<=n;i++)
    44     {
    45         if((1-p[i])%mod == 0)
    46         {
    47             ans = (ans * (b * c[i]+ 1))%mod;
    48             continue;
    49         }
    50         ll Ni = qpow(1-p[i],mod-2);
    51         ll tmp = 1-qpow(p[i],c[i]*b+1);
    52         ans = (ans * (tmp*Ni%mod+mod)%mod)%mod;
    53     }
    54     printf("%lld
    ",ans);
    55 }
    View Code

    还有一种写法,就是不用公式计算等比数列和,这样就避免了逆元的问题

    sum(p,c) = (1 + p + p2 + ... + pk

    (1)c为奇数,sum(p,k)= sum(p,(k-1 )/2)*(1+p(k+1)/2)   

    sum(p,c) = (1 + p + p2 + ... + p(k-1)/2)+ (p(k+1)/2 + ... + pk)           (c为奇数,加上0次幂,变成偶数,刚好可以分成两个等长的数列)

    (2)c为偶数,sum(p,k)= sum(p,k/2-1)*(1+pk/2)+ p

    sum(p,c) = (1 + p + p2 + ... + pk/2-1)+ (pk/2 + ... + pk-1)+ pk                         (c+1是奇数)

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<math.h>
     4 using namespace std;
     5 
     6 const int maxn = 1e4;
     7 const int mod = 9901;
     8 int a,b;
     9 int p[maxn];
    10 int c[maxn];
    11 int calc(int x)
    12 {
    13     int m= 0;
    14     for(int i=2;i*i<=x;i++)
    15     {
    16         if(x % i == 0)p[++m] = i,c[m] = 0;
    17         while(x % i == 0)x/= i,c[m]++;
    18     }
    19     if(x > 1)p[++m] = x,c[m] = 1;
    20     return m;
    21 }
    22 
    23 typedef long long ll;
    24 ll qpow(ll a,ll b)
    25 {
    26     ll ans = 1;
    27     ll base = a;
    28     while(b)
    29     {
    30         if(b&1)ans = (ans * base)%mod;
    31         base = (base * base)%mod;
    32         b >>= 1;
    33     }
    34     return ans;
    35 }
    36 ll sum(ll p,ll c)
    37 {
    38     if(c == 0)return 1;
    39     if(c&1)return ((1+qpow(p,(c+1)/2))%mod*(sum(p,(c-1)/2)%mod))%mod;
    40     else return ((1+qpow(p,c/2))%mod*(sum(p,c/2-1))%mod+qpow(p,c))%mod;
    41 }
    42 
    43 int main()
    44 {
    45     scanf("%d%d",&a,&b);
    46     int n = calc(a);
    47     ll ans = 1;
    48     for(int i=1;i<=n;i++)
    49     {
    50         ans = (ans * sum(p[i],c[i]*b))%mod;
    51     }
    52     printf("%lld
    ",ans);
    53 }
    View Code
  • 相关阅读:
    数值拓展与函数拓展
    正则小记
    Struts2(三)配置详解
    Struts2(二)工作原理
    Struts2(一)基本配置
    Eclipse新建动态web工程项目出现红叉解决方案
    Spring系列之AOP
    Java动态代理的实现机制
    Spring系列之装配Bean
    Spring系列之基本配置
  • 原文地址:https://www.cnblogs.com/iwannabe/p/10134388.html
Copyright © 2011-2022 走看看