zoukankan      html  css  js  c++  java
  • Best Cow Fences POJ

    Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000.

    FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input.

    Calculate the fence placement that maximizes the average, given the constraint.

    Input

    * Line 1: Two space-separated integers, N and F.

    * Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on.

    Output

    * Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields.

    Sample Input

    10 6
    6 
    4
    2
    10
    3
    8
    5
    9
    4
    1
    

    Sample Output

    6500
    

    题意:n块田地,每块田地有cows【i】头牛,求出一个长度不小于F的子段,使子段牛的平均数最大。
    思路:我们令 avr = sum【i,j】/(i-j+1)
    那么这题就是 求是avr的最大值,我们二分枚举ans,判断 avr 是否不小于 ans,即avr >= ans,为了不维护(i-j+1)的值,变形成sum【i,j】 - ans*(i-j+1) >= 0,
    我们把原数组cows【i】-ans,那么Sum【i,j】 = sum【i,j】-ans(i-j+1)。
    现在关键就是取得一个  max{Sum【i,j】},对于Sum【i,j】,我们可以用前缀和相减的方式求得,sum(i)-min(sum(j)), 0 <= j <= i-F。

    坑点:注意最后答应的是二分的R值,我打印L值Wa的怀疑人生.而且题目要求精度是1e-4,当我们枚举的精度不小于题目要求精度的时候L和R值都是OK的
    我感觉是如果两个值转换为整数不同的话,R值转换的整数值在L~R区间内的,而l转换的值是小于l的,如果两个值转换的值相同,打印那个都行,且整数肯定小于L。

    其实像是最大值最小,最小值最大,都可以用二分解决,答案是单调的,这题还有种用凸包方法写的,以后再填坑吧。

     1 #include<cstdio>
     2 #include<iostream>
     3 using namespace std;
     4 
     5 const int maxn = 1e5+5;
     6 int n,f;
     7 int cows[maxn];
     8 const double eps = 1e-8;
     9 
    10 bool solve(double x,int f)
    11 {
    12     double fcows[n+1];
    13     double sum[n+1];
    14     for(int i=1;i<=n;i++)fcows[i] = cows[i] - x;
    15     for(int i=1;i<=n;i++)sum[i] = sum[i-1]+fcows[i];
    16     double ans = -1e10,minn = 1e10;
    17     for(int i=f;i<=n;i++)
    18     {
    19         minn = min(minn,sum[i-f]);
    20         ans = max(ans,sum[i]-minn);
    21     }
    22     return ans >= 0;
    23 }
    24 int main()
    25 {
    26     scanf("%d%d",&n,&f);
    27     double low=0;
    28     double high = 0;
    29     for(int i=1;i<=n;i++)
    30     {
    31         scanf("%d",&cows[i]);
    32         high += cows[i];
    33     }
    34     while(low + eps < high)
    35     {
    36         double mid = (low+high)/2;
    37         if(solve(mid,f))low = mid;
    38         else high = mid;
    39     }
    40     printf("%d
    ",(int)(1000*high)); 
    41 }
    View Code



  • 相关阅读:
    C++从文件名中去掉后缀
    《深度学习21天实战caffe》_简单读书笔记
    初等变换和阶梯矩阵【】
    A*寻路-2(忘了哪个是最终版的)
    [TWLFramework] 全局委托 全局枚举
    [TWLFramework] Singleton
    [TWLFramework] MessageCenter
    [TWLFramework] Message
    [TWLFramework] UIManager
    [TWLFramework] BasePanel
  • 原文地址:https://www.cnblogs.com/iwannabe/p/10160942.html
Copyright © 2011-2022 走看看