zoukankan      html  css  js  c++  java
  • Radar Installation POJ

    Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d.

    We use Cartesian coordinate system, defining the coasting is the x-axis. The sea side is above x-axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x-y coordinates.

    Figure A Sample Input of Radar Installations


    Input

    The input consists of several test cases. The first line of each case contains two integers n (1<=n<=1000) and d, where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

    The input is terminated by a line containing pair of zeros

    Output

    For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. "-1" installation means no solution for that case.

    Sample Input

    3 2
    1 2
    -3 1
    2 1
    
    1 2
    0 2
    
    0 0
    

    Sample Output

    Case 1: 2
    Case 2: 1
    

    题意:N座岛屿,坐标用xi,yi表示,岛屿都位于x轴上。在x轴上建造雷达,每个雷达的的探测范围是以【x,0】为圆心,半径为R的圆(下半圆一看就没用),问最少几个雷达可以探测全部岛屿?

    思路:我们把每个岛屿为圆心,做出x轴上雷达的可行建造区域,那么问题就变成用最小的雷达覆盖最多的区域(每个区域一个雷达)。
    我们先将区域按左边界递增排序,每取到一个区间,就记录在这个区间右边界pos,如果下个区间的左边界>pos,说明这个雷达无法探测,需要新建雷达,
    否则就pos = min(pos,r),就是让原有的雷达去探测它,但是雷达需要移至两个区间的最小右边界处(交集嘛)。


    ①因为要用比较左边界和上一次区间的右边界,所以一定是按照左边界排序的。(这样处理后面的区域和之前区域没啥关系,只和pos有关)
    置于为什么pos取右边界,因为右边界代表了雷达最远可放置位置(极值),其包含了区间内可行取值了。(决策包容性?)

    ②当然如果你反过来,右边界排序,你就需要比较右边界和上一次的左边界也行。

     1 #include<cstdio>
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<math.h>
     5 using namespace std;
     6 
     7 int n,r;
     8 struct Node
     9 {
    10     double l,r;
    11 } L[1005];
    12 
    13 double calc(int y,int r)
    14 {
    15     return sqrt(r*r-y*y);
    16 }
    17 
    18 int dcmp(double a,double b)
    19 {
    20     if(fabs(a-b) < 1e-8)
    21         return 0;
    22     else
    23         return a-b > 0?1:-1;
    24 }
    25 bool cmp(Node a,Node b)
    26 {
    27     return dcmp(a.l,b.l)<0;
    28 }
    29 int main()
    30 {
    31     int cas = 0;
    32     while(~scanf("%d%d",&n,&r) && (n || r))
    33     {
    34         int ans=0;
    35         for(int i=1; i<=n; i++)
    36         {
    37             double x,y;
    38             scanf("%lf%lf",&x,&y);
    39             if(dcmp(y,r) > 0)
    40             {
    41                 ans = -1;
    42                 continue;
    43             }
    44             double add = calc(y,r);
    45             L[i].l = x-add;
    46             L[i].r = x+add;
    47         }
    48         if(ans == -1){printf("Case %d: -1
    ",++cas);continue;}
    49         sort(L+1,L+1+n,cmp);
    50         double pos = -0x3f3f3f3f3f3f3f;
    51         for(int i=1; i<=n; i++)
    52         {
    53             if(dcmp(L[i].l,pos)>0)
    54             {
    55                 ans++;
    56                 pos = L[i].r;
    57             }
    58             else
    59             {
    60                 pos = min(L[i].r,pos);
    61             }
    62         }
    63         printf("Case %d: %d
    ",++cas,ans);
    64     }
    65 }
    View Code






  • 相关阅读:
    centos6.5 系统乱码解决 i18n --摘自http://blog.csdn.net/yangkai_hudong/article/details/19033393
    openssl pem转cer
    nginx 重装添加http_ssl_module模块
    ios 利用airprint实现无线打印(配合普通打印机)
    centos nginx server_name 配置域名访问规则
    MySQL Innodb数据库性能实践——热点数据性能
    jQuery中的DOM操作
    C++函数学习笔记
    jQuery选择器容易忽视的小知识大问题
    写给自己的话
  • 原文地址:https://www.cnblogs.com/iwannabe/p/10197050.html
Copyright © 2011-2022 走看看