zoukankan      html  css  js  c++  java
  • CodeForces

    odeforces 1051 D. Bicolorings (DP)

     
    D. Bicolorings
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You are given a grid, consisting of 22 rows and nn columns. Each cell of this grid should be colored either black or white.

    Two cells are considered neighbours if they have a common border and share the same color. Two cells AA and BB belong to the same component if they are neighbours, or if there is a neighbour of AA that belongs to the same component with BB.

    Let's call some bicoloring beautiful if it has exactly kk components.

    Count the number of beautiful bicolorings. The number can be big enough, so print the answer modulo 998244353998244353.

    Input

    The only line contains two integers nn and kk (1n10001≤n≤1000, 1k2n1≤k≤2n) — the number of columns in a grid and the number of components required.

    Output

    Print a single integer — the number of beautiful bicolorings modulo 998244353998244353.

    Examples
    Input
    3 4
    Output
    12
    Input
    4 1
    Output
    2
    Input
    1 2
    Output
    2
    Note

    One of possible bicolorings in sample 11:

    题意:就是求2行n列 k个联通块的方案数
    这个题注意前面列的染色情况,就可以知道当前列染色后的方案数,i表示列,k表示联通块,后面一维表示当前位置的染色情况,这个情况总共四种,这样转移方程就很好想,只和前一列的联通块和染色情况有关
     1 #include<bits/stdc++.h>
     2 using namespace std;
     3 typedef long long ll;
     4 int n,k;
     5 
     6 const int mod = 998244353;
     7 ll dp[1005][2005][4];
     8 int main()
     9 {
    10     scanf("%d%d",&n,&k);
    11     dp[1][1][0] = 1;
    12     dp[1][2][1] = 1;
    13     dp[1][2][2] = 1;
    14     dp[1][1][3] = 1;
    15     for(int i=2;i<=n;i++)
    16     {
    17         for(int j=1;j<=(i<<1);j++)
    18         {
    19             dp[i][j][0] = (dp[i][j][0] + dp[i-1][j][0] + dp[i-1][j][1] + dp[i-1][j][2] + dp[i-1][j-1][3])%mod;
    20             dp[i][j][1] = (dp[i][j][1] + dp[i-1][j-1][0] + dp[i-1][j][1] + dp[i-1][j-2][2]+dp[i-1][j-1][3])%mod;
    21             dp[i][j][2] = (dp[i][j][2] + dp[i-1][j-1][0] + dp[i-1][j-2][1] + dp[i-1][j][2]+dp[i-1][j-1][3])%mod;
    22             dp[i][j][3] = (dp[i][j][3] + dp[i-1][j-1][0] + dp[i-1][j][1] + dp[i-1][j][2]+dp[i-1][j][3])%mod;
    23         }
    24     }
    25     printf("%lld
    ",(dp[n][k][0]+dp[n][k][1]+dp[n][k][2]+dp[n][k][3])%mod);
    26 }
    View Code
  • 相关阅读:
    OpenResty 作者章亦春访谈实录
    linux 下C语言学习路线
    swift 集合类型
    不懂技术的人不要对懂技术的人说这很容易实现
    java学习笔记7--抽象类与抽象方法
    java学习笔记6--类的继承、Object类
    python练习题
    python的里字典和列表
    python里list列表,tuple元组内部功能介绍
    python里float和long内部功能及字符串str介绍
  • 原文地址:https://www.cnblogs.com/iwannabe/p/9752443.html
Copyright © 2011-2022 走看看