zoukankan      html  css  js  c++  java
  • The Number of set_状态压缩&&位运算

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 1338    Accepted Submission(s): 823


    Problem Description
    Given you n sets.All positive integers in sets are not less than 1 and not greater than m.If use these sets to combinate the new set,how many different new set you can get.The given sets can not be broken.
     
    Input
    There are several cases.For each case,the first line contains two positive integer n and m(1<=n<=100,1<=m<=14).Then the following n lines describe the n sets.These lines each contains k+1 positive integer,the first which is k,then k integers are given. The input is end by EOF.
     
    Output
    For each case,the output contain only one integer,the number of the different sets you get.
     
    Sample Input
    4 4 1 1 1 2 1 3 1 4 2 4 3 1 2 3 4 1 2 3 4
     
    Sample Output
    15 2

    用二进制保存一个集合的元素,如集合为1 3,即为(101)5;

    集合的合并(9)1001 | 111(7)=1111  就是15;最大就是(11111111111111)2^15-1来表示一个集合!

    #include<iostream>
    #include<string.h>
    using namespace std;
    
    int s[1<<15];
    int main()
    {
        int n,m;
        while(cin>>n>>m)
        {
            memset(s,0,sizeof(s));
            int cnt=0;
            while(n--)
            {
                int k,ele;
                int set=0;
                cin>>k;
                while(k--)
                {
                    cin>>ele;
                    set=set|(1<<(ele-1));//集合中有元素ele,在1后面添加ele-1个零,则表示第ele位为1表示集合中存在ele;
                }
                s[set]=1;
                for(int j=1;j<=(1<<14);j++)
                {
                    if(s[j]) {s[set|j]=1;}
                }
            }
            for(int j=1; j<=(1<<14); j++)
            {
                if(s[j]) cnt++;
            }
            cout<<cnt<<endl;
        }
        return 0;
    }
  • 相关阅读:
    jni中调用java方法获取当前apk的签名文件md5值
    Android底层驱动开发(一)
    作为原作者你能忍吗?
    SUN dataset图像数据集下载
    计算机视觉和图像处理常用的一些标准图片
    Docker基础技术:DeviceMapper
    Docker基础技术:AUFS
    Docker基础技术:Linux CGroup
    Docker基础技术:Linux Namespace(下)
    Docker基础技术:Linux Namespace(上)
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5736647.html
Copyright © 2011-2022 走看看