zoukankan      html  css  js  c++  java
  • The Triangle_DP

    ime Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 45620   Accepted: 27612

    Description

    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    (Figure 1)
    Figure 1 shows a number triangle. Write a program that calculates the highest sum of numbers passed on a route that starts at the top and ends somewhere on the base. Each step can go either diagonally down to the left or diagonally down to the right. 

    Input

    Your program is to read from standard input. The first line contains one integer N: the number of rows in the triangle. The following N lines describe the data of the triangle. The number of rows in the triangle is > 1 but <= 100. The numbers in the triangle, all integers, are between 0 and 99.

    Output

    Your program is to write to standard output. The highest sum is written as an integer.

    Sample Input

    5
    7
    3 8
    8 1 0 
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30
    #include<iostream>
    #include<string.h>
    #include<stdio.h>
    using namespace std;
    const int N=105;
    int mp[N][N];
    int dp[N][N];
    int main()
    {
        int n;
        while(~scanf("%d",&n))
        {
            memset(dp,0,sizeof(dp));
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=i;j++)
                {
                    scanf("%d",&mp[i][j]);
    
                }
                dp[i][i]=dp[i-1][i-1]+mp[i][i];
            }
    
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=i;j++)
                {
                    if(i==1) dp[i][j]=mp[i][j];
                    else if(j==1) dp[i][j]=dp[i-1][j]+mp[i][j];
                    else if(j==i) dp[i][j]=dp[i-1][j-1]+mp[i][j];
                    else dp[i][j]=max(dp[i-1][j-1]+mp[i][j],dp[i-1][j]+mp[i][j]);
                }
            }
            int ans=0;
            for(int i=1;i<=n;i++)
            {
                if(ans<dp[n][i])
                    ans=dp[n][i];
            }
            cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    Tornado输出和响应头
    sqlalchemy 学习(二)scoped session
    04:sqlalchemy操作数据库 不错
    sqlalchemy(二)高级用法
    红黑树
    Minimum Window Substring
    Max Points on a Line
    分治算法
    Maximum Subarray
    Word Break
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5833644.html
Copyright © 2011-2022 走看看