zoukankan      html  css  js  c++  java
  • 4 Values whose Sum is 0_upper_bound&&ower_bound

    Description

    The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n .

    Input

    The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228 ) that belong respectively to A, B, C and D .

    Output

    For each input file, your program has to write the number quadruplets whose sum is zero.

    Sample Input

    6
    -45 22 42 -16
    -41 -27 56 30
    -36 53 -37 77
    -36 30 -75 -46
    26 -38 -10 62
    -32 -54 -6 45
    

    Sample Output

    5
    

    Hint

    Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

    【题意】给出一个n*4的矩阵,每列上选一个数使得最后加起来为0,问有多少种取法

    【思路】先用ab数组存a+b的所有组合,同理,存储cd数组,然后对cd数组进行排序,然后用upper_bound,lower_bound查找是否存在-ab[i],正好两者只差为1,即多了一种组合方式

    #include<iostream>
    #include<stdio.h>
    #include<algorithm>
    #include<string.h>
    using namespace std;
    const int N=4000+10;
    int n;
    int a[N],b[N],c[N],d[N];
    int ab[N*N],cd[N*N];
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
        }
        int k=0;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                ab[k]=a[i]+b[j];
                cd[k]=c[i]+d[j];
                k++;
            }
        }
        sort(cd,cd+k);
        long long ans=0;
        for(int i=0;i<k;i++)
        {
            int tmp=-ab[i];
            ans+=(long long )(upper_bound(cd,cd+k,tmp)-lower_bound(cd,cd+k,tmp));
        }
        printf("%I64d
    ",ans);
        return 0;
    }
  • 相关阅读:
    课后作业
    大道至简第六章读后感
    Ljava.lang.Object;@ba8a1dc
    课后作业
    大道至简第五章读后感
    课后作业加密
    动手动脑
    大道至简第四章读后感
    NEU 解题报告索引
    Aizu 解题报告索引
  • 原文地址:https://www.cnblogs.com/iwantstrong/p/5987750.html
Copyright © 2011-2022 走看看