Description
Let us consider the sequence a1, a2,..., an of non-negative integer numbers. Denote as ci,j the number of occurrences of the number i among a1,a2,..., aj. We call the sequence k-nice if for all i1<i2 and for all j the following condition is satisfied: ci1,j ≥ ci2,j −k.
Given the sequence a1,a2,..., an and the number k, find its longest prefix that is k-nice.
Input
Output
Sample Input
10 1 0 1 1 0 2 2 1 2 2 3 2 0 1 0
Sample Output
8 1
【题意】用线段树维护 0到A[i]-1间的最小值,用F[A[i]] 统计频率。判断 0 到 A[i]-1范围内的最小值与F[A[i]]-K的大小即可。
【思路】cnt[i]是当前i出现的次数。每次读入一个数a进来,cnt[a]++。只要c[1]...c[a-1]都满足c[i]+K>=c[a]就可以了,一旦不满足就结束程序并输出答案。
那么找c[1]...c[a-1]中最小的即可。如果最小的都满足不等式就不用验证其他的了。于是用线段树实现这个查询操作。
注意线段树建树从[0,N]开始,因为The second line contains n integer numbers ranging from 0 to n.
参考:http://blog.csdn.net/liao_jingyi/article/details/43531123
#include<iostream> #include<stdio.h> #include<string.h> using namespace std; const int N=200000+10; int cnt[N]; int n,k; struct node { int l,r,sum; } tree[N*4]; void build(int k,int l,int r) { tree[k].l=l; tree[k].r=r; if(l==r) return ; int mid=l+r>>1; build(k*2,l,mid); build(k*2+1,mid+1,r); } void update(int x,int k) { if(tree[k].l==tree[k].r) { tree[k].sum++; return ; } int mid=(tree[k].l+tree[k].r)>>1; if(x<=mid) update(x,k*2); else update(x,k*2+1); tree[k].sum=min(tree[k*2].sum,tree[k*2+1].sum); } int query(int x,int k) { if(x>=tree[k].r) return tree[k].sum; int mid=(tree[k].l+tree[k].r)>>1; int ansl=query(x,k*2); int ansr=0x3f3f3f3f; if(mid<x) ansr=query(x,k*2+1); return min(ansl,ansr); } int main() { scanf("%d%d",&n,&k); build(1,0,n); int ans=0; for(int i=1; i<=n; i++) { int a; scanf("%d",&a); cnt[a]++; update(a,1); if(query(a,1)+k>=cnt[a]) ans=i; else break; } printf("%d ",ans); return 0; }