首先,这是我自己推出来的,O(n^2),常数巨大。所以无能为力优化!所以求此数列的公式!求优化!!!
主要思想:要算b次的,那么就要先算b+1次的。
首先,我用F(i, j)表示杨辉三角第i层第j个,即(a+b)^(i-1),i>1的展开各项系数
第1层:1
第2层:1 1 ((a+b)^1)
第3层:1 2 1 ((a+b)^2)
第4层:1 3 3 1 ((a+b)^3)
....
upd:原来自己2写的都是什么东西,后期想改成latex也不改了,就这样了。现在我来推:
用高一次的推低次的:
$$要求:sum_{i=1}^{n} i^b$$
$$那么根据:sum_{i=1}^{n} i^{b+1} + (n+1)^{b+1} = sum_{i=1}^{n+1} i^{b+1} = sum_{i=0}^{n} (i+1)^{b+1}$$
然后展开右式后发现能高此项的能约掉,所以就能得到低次项的。
那么,(n+1)^b展开就是
$$F(b+1,1) imes n^b + F(b+1,2) imes n^(b-1) + ... + F(b+1,b) imes n^1 + F(b+1,b+1) imes n^0$$
那么
$$(1+1)^b + (2+1)^b + (3+1)^b + ... + (n+1)^b =$$
$$(F(b+1,1) imes 1^b + F(b+1,1) imes 2^b + F(b+1,1) imes 3^b + ... + F(b+1,1) imes n^b) +$$
$$(F(b+1,2) imes 1^(b-1) + F(b+1,2) imes 2^(b-1) + F(b+1,2) imes 3^(b-1) + ... + F(b+1,2) imes n^(b-1) ) +$$
...
$$(F(b+1,b) imes 1^1 + F(b+1,b) imes 2^1 + F(b+1,b) imes 3^1 + ... + F(b+1,b) imes n^1) +$$
$$(F(b+1,b+1) imes 1^0 + F(b+1,b+1) imes 2^0 + F(b+1,b+1) imes 3^0 + ... + F(b+1,b+1) imes n^0) = $$
$$F(b+1,1) imes (1^b+2^b+...+n^b) + F(b+1,2) imes (1^(b-1)+2^(b-1)+...+n^(b-1)) + ... + F(b+1,b) imes (1^1+2^1+...+n^1) + F(b+1,b+1) imes (1^0+2^0+...+n^0) $$
因为F(b+1,1)=F(b+1,b+1)=1
所以 化简得到
$$(1+1)^b + (2+1)^b + (3+1)^b + ... + (n+1)^b =
(1^b+2^b+...+n^b) + F(b+1,2) imes (1^(b-1)+2^(b-1)+...+n^(b-1)) + ... + F(b+1,b) imes (1^1+2^1+...+n^1) + n$$
好了,我们发现了1^(b-1)+2^(b-1)+...+n^(b-1)出现了,那么就可以算了。将(1^b+2^b+...+n^b) 移左式,得
(n+1)^b - 1 - n = F(b+1,2) imes (1^(b-1)+2^(b-1)+...+n^(b-1)) + ... + F(b+1,b) imes (1^1+2^1+...+n^1)
好了,继续化简,得
1^(b-1)+2^(b-1)+...+n^(b-1) = ((n+1)^b - (n+1) - F(b+1,3) imes (1^(b-2)+2^(b-2)+...+n^(b-2)) - ... - F(b+1,b) imes (1+2+...+n)) / F(b+1,2)
因为F(b+1,2) = b,所以,最终得
1^(b-1)+2^(b-1)+...+n^(b-1) = ((n+1)^b - (n+1) - F(b+1,3) imes (1^(b-2)+2^(b-2)+...+n^(b-2)) - ... - F(b+1,b) imes (1+2+...+n)) / b
我们令 x = b-1,那么b = x+1,得
1^x+2^x+...+n^x = ((n+1)^(x+1) - (n+1) - F(x+2,3) imes (1^(x-1)+2^(x-1)+...+n^(x-1)) - ... - F(x+2,x+1) imes (1+2+...+n)) / (x+1)
好了,我们现在用S(x)表示1^x+2^x+...+n^x
得到公式:
S(1) = 1^1+2^1+...+n^1 = n(n+1) / 2
S(x) = ((n+1)^(x+1) - (n+1) - F(x+2,3) imes S(x-1) - F(x+2,4) imes S(x-2) - ... - F(x+2,x+1) imes S(1)) / (x+1)
(不证明了,自己用归纳证一下)
(另,求优化!有没有O(1)算法,那个(n+1)^(x+1)会耗很多时间= =)
好了。我们将x=2带进去得到1^2+2^2+...+n^2
得到
S(2) = ((n+1)^3- (n+1) - F(4,3) imes S(1)) / 3 = ((n+1)^3- (n+1) - 3 imes (n(n+1) / 2)) / 3 = (n^3 + 3 imes n^2 + 2 imes n - 3 imes n(n+1)/2) / 3 = n imes (2 imes n^2+3n+1) / 6 =n imes (n+1) imes (2 imes n+1) / 6
所以
S(2) = n imes (n+1) imes (2 imes n+1) / 6
即 1^2+2^2+...+n^2 = n imes (n+1) imes (2 imes n+1) / 6
(求大神们指点)