zoukankan      html  css  js  c++  java
  • 【POJ】3255 Roadblocks(次短路+spfa)

    http://poj.org/problem?id=3255

    同匈牙利游戏。

    但是我发现了一个致命bug。

    就是在匈牙利那篇,应该dis2单独if,而不是else if,因为dis2和dis1相对独立。有可能在前边两个if改了后还有更优的次短路。

    所以,,wikioi那题太水,让我水过了。。

    #include <cstdio>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <iostream>
    #include <algorithm>
    using namespace std;
    #define rep(i, n) for(int i=0; i<(n); ++i)
    #define for1(i,a,n) for(int i=(a);i<=(n);++i)
    #define for2(i,a,n) for(int i=(a);i<(n);++i)
    #define for3(i,a,n) for(int i=(a);i>=(n);--i)
    #define for4(i,a,n) for(int i=(a);i>(n);--i)
    #define CC(i,a) memset(i,a,sizeof(i))
    #define read(a) a=getint()
    #define print(a) printf("%d", a)
    #define dbg(x) cout << #x << " = " << x << endl
    #define printarr(a, n, m) rep(aaa, n) { rep(bbb, m) cout << a[aaa][bbb]; cout << endl; }
    inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
    inline const int max(const int &a, const int &b) { return a>b?a:b; }
    inline const int min(const int &a, const int &b) { return a<b?a:b; }
    
    const int N=5050;
    const long long oo=~0ull>>2;
    int m, n, vis[N], q[N], front, tail, ihead[N], cnt;
    long long d[N], d2[N];
    struct ED { int to, next; long long w; }e[200010];
    inline void add(const int &u, const int &v, const int &w) {
    	e[++cnt].next=ihead[u]; ihead[u]=cnt; e[cnt].to=v; e[cnt].w=w;
    }
    long long spfa(const int &s, const int &t) {
    	for1(i, 0, t) d[i]=d2[i]=oo;
    	d[s]=front=tail=0; vis[s]=1;  q[tail++]=s;
    	int u, v, w;
    	while(front!=tail) {
    		u=q[front++]; if(front==N) front=0; vis[u]=0;
    		for(int i=ihead[u]; i; i=e[i].next) {
    			v=e[i].to; w=e[i].w;
    			if(d[v]>d[u]+w) {
    				d2[v]=d[v]; d[v]=d[u]+w;
    				if(!vis[v]) { vis[v]=1; q[tail++]=v; if(tail==N) tail=0; }
    			}
    			else if(d2[v]>d[u]+w && d[v]<d[u]+w) {
    				d2[v]=d[u]+w;
    				if(!vis[v]) { vis[v]=1; q[tail++]=v; if(tail==N) tail=0; }
    			}
    			if(d2[v]>d2[u]+w) {
    				d2[v]=d2[u]+w;
    				if(!vis[v]) { vis[v]=1; q[tail++]=v; if(tail==N) tail=0; }
    			}
    		}
    	}
    	if(d2[t]!=oo) return d2[t];
    	return -1;
    }
    
    int main() {
    	read(n); read(m);
    	int x, y, z;
    	rep(i, m) {
    		read(x); read(y); read(z);
    		add(x, y, z); add(y, x, z);
    	}
    	printf("%lld", spfa(1, n));
    	return 0;
    }
    

    Description

    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersection N.

    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

    Input

    Line 1: Two space-separated integers: N and R
    Lines 2..R+1: Each line contains three space-separated integers: A, B, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

    Output

    Line 1: The length of the second shortest path between node 1 and node N

    Sample Input

    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100

    Sample Output

    450

    Hint

    Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)

    Source

  • 相关阅读:
    List<T>直接充当Combox控件DataSource并扩展自定义记录的方法
    List转Datatable 新方法
    CDM中,实体与实体快捷方式之间的联系不能重复,否则会造成外键重复
    PD中设置外键约束名称生成规则
    查询当前数据库用户会话信息
    Word中调整编号和文字的间距
    PDM/CDM中进行搜索
    PDM后续处理-驼峰规则、清除约束、外键改名
    列举当前用户或指定用户的所有表,所有字段,以及所有约束
    PDM中列举所有含取值范围、正则表达式约束的字段
  • 原文地址:https://www.cnblogs.com/iwtwiioi/p/3938831.html
Copyright © 2011-2022 走看看