http://www.lydsy.com/JudgeOnline/problem.php?id=3016
之前yy了一个贪心,,,但是错了,,就是枚举前后对应的字符(前面第i个和后面第i个)然后相同答案就+1,否则不操作。。
QAQ
然后看了题解。。。神。。
首先序列肯定是偶数个,然后。。一定有n/2个‘(’,和n/2个‘)’
那么左边的一定都是‘(’,对于每一个‘(’,右边的一定有一个‘)’,所以我们想到差分,当右边多了‘)’,那么就要累计答案+1,维护一个sum,如果是‘(’就+1,‘)’就-1,按上边说的操作,即当sum<0的时候ans+1,然后sum要+=2(就相当于sum=1,即左边有一个‘(’),然后最后可能还剩余‘(’,所以我们将答案加上sum/2即可
#include <cstdio> #include <cstring> #include <cmath> #include <string> #include <iostream> #include <algorithm> #include <queue> using namespace std; #define rep(i, n) for(int i=0; i<(n); ++i) #define for1(i,a,n) for(int i=(a);i<=(n);++i) #define for2(i,a,n) for(int i=(a);i<(n);++i) #define for3(i,a,n) for(int i=(a);i>=(n);--i) #define for4(i,a,n) for(int i=(a);i>(n);--i) #define CC(i,a) memset(i,a,sizeof(i)) #define read(a) a=getint() #define print(a) printf("%d", a) #define dbg(x) cout << #x << " = " << x << endl #define printarr2(a, b, c) for1(i, 1, b) { for1(j, 1, c) cout << a[i][j]; cout << endl; } #define printarr1(a, b) for1(i, 1, b) cout << a[i]; cout << endl inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; } inline const int max(const int &a, const int &b) { return a>b?a:b; } inline const int min(const int &a, const int &b) { return a<b?a:b; } int sum, ans; int main() { while(1) { char ch=getchar(); if(ch!='('&&ch!=')') break; if(ch=='(') ++sum; else --sum; if(sum<0) ++ans, sum+=2; } ans+=sum>>1; print(ans); return 0; }
Description
Bessie the cow is trying to type a balanced string of parentheses into her new laptop, but she is sufficiently clumsy (due to her large hooves) that she keeps mis-typing characters. Please help her by computing the minimum number of characters in the string that one must reverse (e.g., changing a left parenthesis to a right parenthesis, or vice versa) so that the string would become balanced. There are several ways to define what it means for a string of parentheses to be "balanced". Perhaps the simplest definition is that there must be the same total number of ('s and )'s, and for any prefix of the string, there must be at least as many ('s as )'s. For example, the following strings are all balanced:
()
(())
()(()())
while these are not:
)(
())(
((())))
问题描述
给定长度为n的一个括号序列,每次修改可以修改一个位置的括号,若这个括号为’(‘,则修改为’)’,若这个括号为’)’,则修改为’(‘,问最少修改多少个使得原括号序列合法。
其中:
① ()是合法的;
② 若A是合法的,则(A)是合法的;
③ 若A,B都是合法的,则AB是合法的。
Input
一个长度为n个括号序列。
Output
最少的修改次数。
Sample Input
())(
Sample Output
2
样例说明
修改为()(),其中红色部分表示修改的括号。
数据范围
100%的数据满足:1 <= n <= 100,000。
样例说明
修改为()(),其中红色部分表示修改的括号。
数据范围
100%的数据满足:1 <= n <= 100,000。